Mnist 数据文件有两种,一种是图片文件,一种是标签文件,那么如何把他们解析出来呢? (1)解析图片文件 可以看出在train-images.idx3-ubyte中,第一个数为32位的整数(魔数,图片类型的数),第二个数为32位的整数(图片的个数),第三和第四个也是32为的整数(分别代表图片的行数和列数),接下来的都是一个字节的无符号数(即像素,值域为0~255),因此,我们只需要依次获取魔数和图片的个数,然后获取图片的长和宽,最后逐个像素读取就可以了. (2)解析标签文件 可以发现,与上面的…
深度学习界的Hello Word程序:MNIST手写数字体识别 learn from(仍然是李宏毅老师<机器学习>课程):http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html import numpy as np from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers im…
手写数字库很容易建立,但是总会很浪费时间.Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建有一个手写数字数据库,训练库有60,000张手写数字图像,测试库有10,000张. 请访问原站 http://yann.lecun.com/exdb/mnist/ 该数据库在一个文件中包含了所有图像,使用起来有所不便.如果我把每个图像分别保存,成了图像各自独立的数据库. 并在Google Code中托管. 如果你有需要,欢迎在此下载: http://yann.le…
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如下图所示: 将这个循环展开得到下图: 上一时刻的状态会传递到下一时刻.这种链式特性决定了RNN能够很好的处理序列化的数据,RNN 在语音识别,语言建模,翻译,图片描述等问题上已经取得了很到的结果. 根据输入.输出的不同和是否有延迟等一些情况,RNN在应用中有如下一些形态: RNN存在的问题 RNN能…
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 导读 MNIST数据集 数据处理 单层隐藏层神经网络的实现 多层隐藏层神经网络的实现 导读 就像我们在学习一门编程语言时总喜欢把"Hello World!"作为入门的示例代码一样,MNIST手写数字识别问题就像是深度学习的"Hello World!".通过这个例子,我们将了解如何将数据转化为神经网络所需要的数据格式,以及如何使用TensorF…
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html 前言 这篇博客将利用神经网络去训练MNIST数据集,通过学习到的模型去分类手写数字. 我会将本篇博客的jupyter notebook放在最后,方便你下载在线调试!推荐结合官方的tensorflow教程来看这个notebook! 1. MNIST数据集的导入 这里介绍一下MNIST,MNIST是在…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
一.前述 本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类. 同时对模型的保存和恢复做下示例. 二.具体原理 代码一:实现代码 #!/usr/bin/python # -*- coding: UTF-8 -*- # 文件名: 12_Softmax_regression.py from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # mn.SOURCE…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…