pytorch基础学习(一)】的更多相关文章

在神经网络训练时,还涉及到一些tricks,如网络权重的初始化方法,优化器种类(权重更新),图片预处理等,继续填坑. 1. 神经网络初始化(Network Initialization ) 1.1 初始化原因 我们构建好网络,开始训练前,不能默认的将所有权重系数都初始化为零,因为所有卷积核的系数都相等时,提取特征就会一样,反向传播时的梯度也会存在对称性,网络会退化会线性模型.另外网络层数较深时,初始化权重过大,会出现梯度爆炸,而过小又会出现梯度消失.一般权重初始化时需要考虑两个问题: (1)权重…
目录 1. 前言 # 2. Deep Learning with PyTorch: A 60 Minute Blitz 2.1 base operations 2.2 train a classifier 3 规范化pytorch训练MNIST数据集 1. 前言   最近在学习pytorch,先照着官方的"60分钟教程"学习了一下,然后再github上找了两个star比较多的项目,自己写了一下,学习一下别人的写法. # 2. Deep Learning with PyTorch: A…
在炼丹师的路上越走越远,开始入手pytorch框架的学习,越炼越熟吧... 1. 张量的创建和操作 创建为初始化矩阵,并初始化 a = torch.empty(, ) #创建一个5*3的未初始化矩阵 nn.init.zeros_(a) #初始化a为0 nn.init.constant_(a, ) # 初始化a为3 nn.init.uniform_(a) #初始化为uniform分布 随机数矩阵 torch.rand(, ) # * , [, )的随机数torch.rand_like(m) #创建…
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch是美国互联网巨头Facebook在深度学习框架Torch的基础上使用Python重写的一个全新的深度学习框架,它更像NumPy的替代产物,不仅继承了NumPy的众多优点,还支持GPUs计算,在计算效率上要比NumPy有更明显的优势:不仅如此,PyTorch还有许多高级功能,比如拥有丰富的API,可以快速完成深…
DEADLINE: 2020-07-25 22:00 写在最前面: 本课程的主要思路还是要求大家大量练习 pytorch 代码,在写代码的过程中掌握深度学习的各类算法,希望大家能够坚持练习,相信经度过这个酷暑,不知不觉中,你会感觉自己有显著提高.代码教程在 github 上,如遇到图片不显示的情况,可参考博客解决问题:https://blog.csdn.net/qq_38232598/article/details/91346392 目录 1. 视频学习 1.1 绪论 1.2 深度学习概述 1.…
一.编程语言分类 1.简介 机器语言:站在计算机的角度,说计算机能听懂的语言,那就是直接用二进制编程,直接操作硬件 汇编语言:站在计算机的角度,简写的英文标识符取代二进制去编写程序,本质仍然是直接操作硬件 高级语言:站在人的角度,说人话:即用人类的字符去编写程序,屏蔽了硬件操作 2.优缺点 语言 优点 缺点 机器语言 最底层,执行速度快 最复杂,开发效率最低 汇编语言 比较底层,执行速度较快 复杂,开发效率低 高级语言 编译型: 执行速度快,不依赖语言环境运行 跨平台差 解释型: 跨平台好,一份…
一.Python基础学习 一.编程语言分类 1.简介 机器语言:站在计算机的角度,说计算机能听懂的语言,那就是直接用二进制编程,直接操作硬件 汇编语言:站在计算机的角度,简写的英文标识符取代二进制去编写程序,本质仍然是直接操作硬件 高级语言:站在人的角度,说人话:即用人类的字符去编写程序,屏蔽了硬件操作 2.优缺点 语言 优点 缺点 机器语言 最底层,执行速度快 最复杂,开发效率最低 汇编语言 比较底层,执行速度较快 复杂,开发效率低 高级语言 编译型: 执行速度快,不依赖语言环境运行 跨平台差…
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能.通过学习<深度学习入门之PyTorch>,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型.学到机器学习中的线性回归和 Logistic 回归.深度…
PyTorch基础 摘抄自<深度学习之Pytorch>. Tensor(张量) PyTorch里面处理的最基本的操作对象就是Tensor,表示的是一个多维矩阵,比如零维矩阵就是一个点,一维就是向量,二维就是一般的矩阵,多维就相当于一个多维数组,这和numpy是对应,而且PyTorch的Tensor可以和numpy的ndarray相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在CPU上运行. 常用的不同数据类型的Tensor有32位浮点型torch.Fl…
Python如今成为零基础编程爱好者的首选学习语言,这和Python语言自身的强大功能和简单易学是分不开的.今天我们将带领Python零基础的初学者完成入门的第一步——环境搭建.本文会先来区分几个在Python基础学习中比较容易混淆的工具,然后帮助大家一步步修改镜像源,完成环境的搭建,下面一起来看看吧! 1.概念区分 对于刚刚开始学习Python的零基础小白来说,可能很容易就会对Pycharm.Python解释器.conda安装.pip安装这个几个概念混淆.下面我们就来逐一认识一下它们: (1)…