准确率和召回率(precision&recall)】的更多相关文章

在机器学习.推荐系统.信息检索.自然语言处理.多媒体视觉等领域,常常会用到准确率(precision).召回率(recall).F-measure.F1-score 来评价算法的准确性. 一.准确率和召回率(P&R) 以文本检索为例,先看下图 当中,黑框表示检索域,我们从中检索与目标文本相关性大的项.图中黄色部分(A+B)表示检索域中与目标文本先关性高的项,图中 A+C部分表示你的算法检索出的项.A.B.C的含义图中英文标出. 准确率: 召回率: 一般来说,准确率表示你的算法检索出来的有多少是正…
yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall)和F1-Measure.(注: 相对来说,IR 的 ground truth 很多时候是一个 Ordered List, 而不是一个 Bool 类型的 Unordered Collection,在都找到的情况下,排在第三名还是第四名损失…
Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);在信息检索(如搜索引擎).自然语言处理和检测分类中经常会使用这些参数. Precision:被检测出来的信息当中正确的或者相关的(也就是你想要的)信息中所占的比例(TP占预测总正样本的比例): Recall:所有正确的信息或者相关的信息(wanted)被检测出来的比例(TP占真实总正样本数的比例).     表格中的翻译比较重要,可以帮助理解. true positives (纳真)          …
转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037   Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);       在信息检索(如搜索引擎).自然语言处理和检测分类中经常会使用这些参数,介于语言翻译上的原因理解难免出现误差,下面介绍下自己对他们的理解.   首先来个定义: Precision:被检测出来的信息当中 正确的或者相关的(也就是你想要的)信息中所占的比例: Reca…
Evaluation metricsa binary classifier accuracy,specificity,sensitivety.(整个分类器的准确性,正确率,错误率)表示分类正确:True Positive:本来是正样例,分类成正样例. True Negative:本来是负样例,分类成负样例. 表示分类错误:False Positive :本来是负样例,分类成正样例,通常叫误报. False Negative:本来是正样例,分类成负样例,通常叫漏报. P=TP/TP+FP R=TP…
建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多的数据,更多的特征或者其他方式会有所帮助: 3)人工检查那些算法预测错误的例子(在交叉验证集上),看看能否找到一些产生错误的原因. 评估模型 首先,引入一个概念,非对称性分类.考虑癌症预测问题,y=1 代表癌症,y=0 代表没有癌症,对于一个数据集,我们建立logistic 回归模型,经过以上建模的…
准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候我们需要将三者放到特定的任务环境中才会更加明显的感觉到三者的差异. 在介绍这些之前,我们先回顾一下我们的混淆矩阵. True Positive(真正, TP):将正类预测为正类数. True Negative(真负 , TN):将负类预测为负类数. False Positive(假正, FP):将负类预测为正…
原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常重要,因此最近根据网友的博客做了一个汇总. 准确率.召回率.F1 信息检索.分类.识别.翻译等领域两个最基本指标是召回率(Recall Rate)和准确率(Precision Rate),召回率也叫查全率,准确率也叫查准率,概念公式: 召回率(Recall)      =  系统检索到的相关文件 /…
建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多的数据,更多的特征或者其他方式会有所帮助: 3)人工检查那些算法预测错误的例子(在交叉验证集上),看看能否找到一些产生错误的原因. 评估模型 首先,引入一个概念,非对称性分类.考虑癌症预测问题,y=1 代表癌症,y=0 代表没有癌症,对于一个数据集,我们建立logistic 回归模型,经过以上建模的…
下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率:召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率. 一般来说,Precision就是检索出来的条目(比如:文档.网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了. 正确率.召回…