论文信息 论文标题:How Attentive are Graph Attention Networks?论文作者:Shaked Brody, Uri Alon, Eran Yahav论文来源:2022,ICLR论文地址:download 论文代码:download 1 Abstract 在 GAT中,每个节点都为它的邻居给出自己的查询表示.然而,在本文中证明了 GAT 计算的是一种非常有限的注意类型:注意力分数在查询节点上是无条件的.本文将其定义为静态注意力,并提出了相应的动态注意力 GATv…
论文信息 论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks论文作者:Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang,Sophia Ananiadou论文来源:2021,EMNLP 论文地址:download 论文代码:download Background 传播结构为谣言的真假…
Graph Attention Networks 2018-02-06  16:52:49 Abstract: 本文提出一种新颖的 graph attention networks (GATs), 可以处理 graph 结构的数据,利用 masked self-attentional layers 来解决基于 graph convolutions 以及他们的预测 的前人方法(prior methods)的不足. 对象:graph-structured data. 方法:masked self-a…
基本就是第一层concatenate,第二层不concatenate. 相关论文: Semi-Supervised Classification with Graph Convolutional Networks Geometric deep learning on graphs and manifolds using mixture model CNNs Convolutional Neural Networks on Graphs with Fast Localized Spectral F…
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Graham W. Taylor, Mohamed R. Amer论文来源:2019,NeurIPS论文地址:download 论文代码:download 1 Introduction 本文关注将注意力 GNNs 推广到更大.更复杂或有噪声的图.作者发现在某些情况下,注意力机制的影响可以忽略不计,甚至有害…
之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的. 对于图注意力网络还不了解的可以先去看看tensorflow版本的代码,之前讲解的地址: 非稀疏矩阵版:https://www.cnblogs.com/xiximayou/p/13622283.html 稀疏矩阵版:https://www.cnblogs.com/xiximayou/p/13623989.html 以下改写后的代码我已经上传到gihub上,地址为: ht…
基本信息 论文题目:GRAPH ATTENTION NETWORKS 时间:2018 期刊:ICLR 主要动机 探讨图谱(Graph)作为输入的情况下如何用深度学习完成分类.预测等问题:通过堆叠这种层(层中的顶点会注意邻居的特征),我们可以给邻居中的顶点指定不同的权重,不需要任何一种耗时的矩阵操作(比如求逆)或依赖图结构的先验知识. CNN 结构可以有效用于解决网格状的结构数据,例如图像分类等.但是现有的许多任务的数据并不能表示为网格状的结构,而是分布在不规则的区域,如社交网络.生物网络等.这样…
论文信息 论文标题:Federated Graph Attention Network for Rumor Detection论文作者:Huidong Wang, Chuanzheng Bai, Jinli Yao论文来源:2022, arXiv论文地址:download 论文代码:download 1 Introduction 现有的谣言检测模型都是为单一的社交平台构建的,这忽略了跨平台谣言的价值.本文将联邦学习范式与双向图注意网络谣言检测模型相结合,提出了用于谣言检测的联邦图注意网络(Fed…
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 单头GAPLayer 多头机制 3.2注意力池化层 3.3 GAPNet架构 四.实验 4.1分类 数据集 网络结构 训练细节 结果 消融研究 4.2 语义部件分割 数据集 模型结构 训练细节 结果 五.结论 GAPNet: Graph Attention based Point Neural Ne…
1.图是什么? 本文给出得图的定义为:A graph represents the relations (edges) between a collection of entities (nodes). 即:图表示实体(节点)集合之间的关系(边). 其中 $V$  表示顶点,$E$  表示边,$U$  表示全局.可以看到每一个定义后面都有一个 attributes,这意味着我们不能只关注图的一个结构信息,还应该关注属性信息,比如节点的邻居数,边的权重,最长路径等等. $V$:节点信息(节点标识.…