One-Hot编码 What.Why And When? 一句话概括:one hot编码是将类别变量转换为机器学习算法易于利用的一种形式的过程. 目录: 前言: 通过例子可能更容易理解这个概念. 假设我们有一个迷你数据集: 公司名 类别值 价格 VW 1 20000 Acura 2 10011 Honda 3 50000 Honda 3 10000 其中,类别值是分配给数据集中条目的数值编号.比如,如果我们在数据集中新加入一个公司,那么我们会给这家公司一个新类别值4.当独特的条目增加时,类别值将…
  Hugging Face是什么?它作为一个GitHub史上增长最快的AI项目,创始人将它的成功归功于弥补了科学与生产之间的鸿沟.什么意思呢?因为现在很多AI研究者写了大量的论文和开源了大量的代码,但是AI工程师又不能直接很好的使用,而Hugging Face将这些AI模型进行了更好的封装,满足了AI工程师的生产实践需要,大大降低了AI模型使用的门槛.Hugging Face已经共享了超100,000个预训练模型,10,000个数据集,涵盖了 NLP.计算机视觉.语音.时间序列.生物学.强化学…
去年,我们发布过一篇关于 DreamBooth 编程马拉松的活动通知,获得了全球社区的广泛关注和参与,中国社区的成员们也对这个活动有非常高的热情.同时我们也收到了后台留言反馈说参与活动需要使用的 Google Colab 等工具无法稳定访问.经过与数据科学开源社区--「和鲸社区」的合作,我们成功的将本次「DreamBooth 编程马拉松」进行了本地化,并再次邀请你参与! 请注意,我们与和鲸社区的合作目标是为中国社区成员提供一个微调和上传模型的渠道,本次编程马拉松的截止时间和全球参与方没有任何变动…
1. 什么是迁移学习 迁移学习(Transformer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中.迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题. 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴. 找到目标问题的相似性,迁移学习任务就…
BERT:用于语义理解的深度双向预训练转换器(Transformer)   鉴于最近BERT在人工智能领域特别火,但相关中文资料却很少,因此将BERT论文理论部分(1-3节)翻译成中文以方便大家后续研究. ·  摘要   本文主要介绍一个名为BERT的模型.与现有语言模型不同的是,BERT旨在通过调节所有层中的上下文来进行深度双向的预训练.因此,预训练的BERT表示可以通过另外的输出层进行调整,以创建用于广泛任务的状态模型,例如问题转换和语言参考,而无需实质的任务特定体系结构修改.   BERT…
<COMET:Commonsense Transformers for Automatic Knowledge Graph Construction> 论文地址 论文源码 任务 目的层面 -- 根据两个当前最常用的常识知识图ATOMIC和ConceptNet构建一个用于开发常识知识的自适应生成模型COMET,以协助完成常识知识的自我补充. ​ COMET是一个自适应框架,用于通过在知识元组的种子集上训练语言模型来从语言模型构建常识知识库.这些知识元组为COMET提供了必须学习的知识库结构和关系…
用NVIDIA-NGC对BERT进行训练和微调 Training and Fine-tuning BERT Using NVIDIA NGC 想象一下一个比人类更能理解语言的人工智能程序.想象一下为定制的域或应用程序构建自己的Siri或Google搜索. Google BERT(来自Transformers的双向编码器表示)为自然语言处理(NLP)领域提供了一个改变游戏规则的转折点. BERT运行在NVIDIA GPUs驱动的超级计算机上,训练其庞大的神经网络,达到前所未有的NLP精度,冲击了已…
​  前言  本文解读的论文是ICCV2021中的最佳论文,在短短几个月内,google scholar上有388引用次数,github上有6.1k star. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 代码:https://github. com/micro…
原创作者 | FLPPED 论文: Self-Attention Attribution: Interpreting Information Interactions Inside Transformer (2021 AAAI论文亚军) 地址: https://arxiv.org/pdf/2004.11207.pdf 01 研究背景 随着transformer模型的提出与不断发展,NLP领域迎来了近乎大一统的时代,绝大多数预训练方法例如BERT等都将transformer结构作为模型的框架基础,…
原创作者 | 疯狂的Max 01 背景及动机 Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向. Transformer模型结构中每层都包含着残差结构,而残差结构中最原始的结构设计是Post-LN结构,即把Layer Norm (LN) 放在每个子层处理之后,如下图Figure 1(a)所示:而其他的一些预训练模型如GPT-2,则将LN改到每个子层处理之前,被定义为Pre-LN,如下图Figure 1(b),有论文[…