首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
大话CNN经典模型:AlexNet
】的更多相关文章
大话CNN经典模型:AlexNet
2012年,Alex Krizhevsky.Ilya Sutskever在多伦多大学Geoff Hinton的实验室设计出了一个深层的卷积神经网络AlexNet,夺得了2012年ImageNet LSVRC的冠军,且准确率远超第二名(top5错误率为15.3%,第二名为26.2%),引起了很大的轰动.AlexNet可以说是具有历史意义的一个网络结构,在此之前,深度学习已经沉寂了很长时间,自2012年AlexNet诞生之后,后面的ImageNet冠军都是用卷积神经网络(CNN)来做的,并且层次越来…
大话CNN经典模型:VGGNet
2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名.VGGNet探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了16~19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络最终的性能,使错误率大幅下降,同时拓展性又很强,迁移到其它图片数据上…
大话CNN经典模型:LeNet
近几年来,卷积神经网络(Convolutional Neural Networks,简称CNN)在图像识别中取得了非常成功的应用,成为深度学习的一大亮点.CNN发展至今,已经有很多变种,其中有几个经典模型在CNN发展历程中有着里程碑的意义,它们分别是:LeNet.Alexnet.Googlenet.VGG.DRL等,接下来将分期进行逐一介绍.在之前的文章中,已经介绍了卷积神经网络(CNN)的技术原理,细节部分就不再重复了,有兴趣的同学再打开链接看看(大话卷积神经网络),在此简单回顾一下C…
深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le…
卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning(转)
参考:http://blog.csdn.net/xbinworld/article/details/45619685…
CNN经典模型VGG
VGG是一个很经典的CNN模型,接触深度学习的人大概都有所耳闻.VGG在2014年被提出并拿来参加ImageNet挑战赛,最终实现了92.3%的正确率,得到了当年的亚军.虽然多年过去,又有很多新模型被提出,但是由于VGG简单优美的结构和稳定的性能,它现在仍然被广泛学习和使用.由于对VGG的讨论网上已经有很多,本文简单介绍VGG的结构并探讨它给我们带来的启发. 一.网络结构 VGG的作者在论文中将它称为是Very Deep Convolutional Network,如上图所示的VGG16网络带权…
论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2中我介绍了2016-2017年的几个经典CNN结构,WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet.另外,在ImageNet历年冠军和相关CNN模型中,我简单介绍了ImageNet和历年冠军. AlexNet 贡献:ILSVRC2012冠军,展现出了…
CNN结构演变总结(一)经典模型
导言: 自2012年AlexNet在ImageNet比赛上获得冠军,卷积神经网络逐渐取代传统算法成为了处理计算机视觉任务的核心. 在这几年,研究人员从提升特征提取能力,改进回传梯度更新效果,缩短训练时间,可视化内部结构,减少网络参数量,模型轻量化, 自动设计网络结构等这些方面,对卷积神经网络的结构有了较大的改进,逐渐研究出了AlexNet.ZFNet.VGG.NIN.GoogLeNet和Inception系列.ResNet.WRN和DenseNet等一系列经典模型,MobileNet…
大话目标检测经典模型(RCNN、Fast RCNN、Faster RCNN)
目标检测是深度学习的一个重要应用,就是在图片中要将里面的物体识别出来,并标出物体的位置,一般需要经过两个步骤:1.分类,识别物体是什么 2.定位,找出物体在哪里 除了对单个物体进行检测,还要能支持对多个物体进行检测,如下图所示: 这个问题并不是那么容易解决,由于物体的尺寸变化范围很大.摆放角度多变.姿态不定,而且物体有很多种类别,可以在图片中出现多种物体.出现在任意位置.因此,目标检测是一个比较复杂的问题.最直接的方法便是构建一个深度神经网络,将图像和标注位置作为样本输入,然后经过CNN网络…
【转】[caffe]深度学习之图像分类模型AlexNet解读
[caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097 本文章已收录于: 深度学习知识库 分类: deep learning(28) 版权声明:本文为博主原创文章,未经博主允许不得转载. 在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究ale…