目录 故事 网络设计 网络前端 升采样中的平移-均值化 网络度量 训练 发表于2017年CVPR. 目标:JPEG图像去压缩失真. 主要内容: 同时使用感知损失.对抗损失和JPEG损失(已知量化间隔,惩罚落在间隔外的值),让恢复图像主客观质量都更好. 对像素进行平移-均值化处理,进一步抑制块效应. 亮点:解释了one-to-many的合理性:由于图像恢复是欠定问题,因此理应有多张潜在的高质量图像 可供选择.但是最终没有体现one-to-many啊摔!而是加权组合了这三个损失函数,没有多输出. 评…
目录 1. 故事 2. 方法 3. 实验 这是继SRCNN(超分辨)之后,作者将CNN的战火又烧到了去压缩失真上.我们看看这篇文章有什么至今仍有启发的故事. 贡献: ARCNN. 讨论了low-level的迁移学习优势. 1. 故事 现有的(传统的)方法要么只关注去除块效应,要么只关注去模糊,没有能兼得的.后果就是这两种操作相互矛盾,去块效应的同时导致模糊,去模糊的同时导致振铃效应. 作者尝试将3层的SRCNN直接用于去除压缩失真,发现效果不好.作者于是在中间增加了一层,美其名曰"feature…
目录 背景 相关工作 主要贡献 核心思想 Embedding和Stacking层 交叉网络(Cross Network) 深度网络(Deep Network) 组合层(Combination Layer) 理论分析 多项式近似 FM的泛化 高效映射 总结及思考 背景 探索具有预测能力的组合特征对提高CTR模型的性能十分重要,这也是大量人工特征工程存在的原因.但是数据高维稀疏(大量离散特征one-hot之后)的性质,对特征探索带来了巨大挑战,进而限制了许多大型系统只能使用线性模型(比如逻辑回归).…
今天给大家带来一篇来自CVPR 2017关于人脸识别的文章. 文章题目:Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and 摘要: 文章动机:人脸识别在一个没有约束的环境下,在计算机视觉中是一个非常有挑战性的问题.同一个身份的人脸当呈现不同的装饰,不同的姿势和不同的表情都可以使人脸看起来完全不同.这种相同身份的变化可以压倒不同身份的变化,这样给人脸识别带来更大的挑战,特别是在没有约束的环境下.…
目录 1. 故事 2. 动机 3. 做法 3.1 DRDB 3.2 训练方法 4. 实验 发表于2019 Sensors.这篇文章的思想可能来源于2018 ECCV的SkipNet[11]. 没开源,和SkipNet基本一致,没什么创新点. 1. 故事 本文的改造对象是RDN.RDN由多个RDB组成,用于一般的图像恢复任务.但是,RDN只能用于单一水平的噪声[设计初衷是非盲的].作者希望在RDN的基础上实现两个目标: 能够盲去噪. 能够根据输入噪声的程度,动态调整RDB数量(同一RDN种跳过的R…
目录 非盲增强网络结构 训练目标 压缩系数预测子网络 网络结构 根据块QP判决结果得到帧QP预测结果 保持时序连续性 实验 发表在2019年TCSVT. 本文提出了一个兼具 预测压缩系数 和 非盲去压缩失真 功能的 伪-盲(pseudo-blind)去压缩失真网络.该网络是在Inception的基础上修改的,并加上了一个 压缩系数预测子网络. 这篇文章的Introduction.相关工作回顾.失真成因都写得很一般,我们看个方法就好. 值得一提的是,这可能是第一篇尝试"盲"QP增强论文,…
目录 1. 方法 1.1 框图 1.2 NL流程 1.3 加速版NL 2. 实验 3. 总结 [这是MFQE 2.0的第一篇引用,也是博主学术生涯的第一篇引用.最重要的是,这篇文章确实抓住了MFQE方法的不足之处,而不是像其他文章,随意改改网络罢了.虽然引的是arXiv版本,但是很开心!欢迎大家引用TPAMI版本!] 在MFQE的基础上,作者提出了一个问题:"好"帧里的块的质量就好吗?"差"帧里的块的质量就差吗?显然不一定,因为帧的好/坏是由整张图像的综合质量决定的…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方案的深度工具.对于深度编码方案,像素概率建模和自动编码器是两种方法,分别可以看作是预测编码方案和变换编码方案.对于深度工具,有几种使用深度学习来执行帧内预测.帧间预测.跨通道预测.概率分布预测.变换.后处理.环内滤波器.上/下采样以及编码优化的建议技术.为了倡导基于深度学习的视频编码研究,本文对我们…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测信号和残差信号应用独立的CNN网络.采用标量量化和哈夫曼编码将量化后的特征映射编码为二进制流.本文采用固定的32×32块来证明我们的想法,并与已知的H.264/AVC视频编码标准进行了性能比较,具有可比较的率失真性能.这里使用结构相似性(SSIM)来测量失真,因为它更接近感知响应. I. INTRO…