首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[转]核函数K(kernel function)
】的更多相关文章
统计学习方法:核函数(Kernel function)
作者:桂. 时间:2017-04-26 12:17:42 链接:http://www.cnblogs.com/xingshansi/p/6767980.html 前言 之前分析的感知机.主成分分析(Principle component analysis, PCA)包括后面看的支撑向量机(Support vector machines, SVM),都有用到核函数.核函数是将信号映射到高维,而PCA一般用来降维.这里简单梳理一下核函数的知识: 1)核函数基本概念; 2)核函数的意义; 内容为自己…
[转]核函数K(kernel function)
1 核函数K(kernel function)定义 核函数K(kernel function)就是指K(x, y) = <f(x), f(y)>,其中x和y是n维的输入值,f(·) 是从n维到m维的映射(通常,m>>n).<x, y>是x和y的内积(inner product)(也称点积(dot product)). 举个小小栗子.令 x = (x1, x2, x3, x4); y = (y1, y2, y3, y4);令 f(x) = (x1x1, x1x2, x1x…
Kernel Methods (2) Kernel function
几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个问题: 可以略过特征映射函数\(\Phi\), 只使用kernel function \(\kappa\)吗? 上一节的例子已经给出了答案, YES. 什么样的函数才能被当做kernel function来使用, 总不能只要可以将两个原始输入映射到一个实数上\(\chi^2 \to R\), 就能用…
[].slice.call(k).filter(function(l) { return l != 0 });
[].slice.call(k).filter(function(l) { return l != 0 }); 将类数组调用数组方法.…
核函数(kernel function)
百度百科的解释: 常用核函数: 1.线性核(Linear Kernel): 2.多项式核(Polynomial Kernel): 3.径向基核函数(Radial Basis Function),也叫高斯核(Gaussian Kernel): 还有其他一些偏门核函数:http://blog.csdn.net/wsj998689aa/article/details/47027365…
kernel function
下面这张图位于第一.二象限内.我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母.我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横.纵坐标是两个特征.显然,在这个二维空间内,“+”“-”两类数据不是线性可分的.我们现在考虑核函数,即“内积平方”.这里面是二维空间中的两个点. 这个核函数对应着一个二维空间到三维空间的映射,它的表达式是:可以验证, 在P这个映射下,原来二维空间中的图在三维空间中的像是这个样子:(前后轴为x轴,左右轴为y轴,上下轴为z轴)注意到…
Kernel PCA 原理和演示
Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的投影,在不同的方向上这些数据方差Variance的大小由其特征值(eigenvalue)决定.一般我们会选取最大的几个特征值所在的特征向量(eigenvector),这些方向上的信息丰富,一般认为包含了更多我们所感兴趣的信息.当然,这里面有较强的假设:(1)特征根的大小决定了我们感兴趣信息的多少.即…
支持向量机(SVM)的推导(线性SVM、软间隔SVM、Kernel Trick)
线性可分支持向量机 给定线性可分的训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习到的分离超平面为 \[w^{\ast }x+b^{\ast }=0\] 以及相应的决策函数 \[f\left( x\right) =sign\left(w^{\ast }x+b^{\ast } \right)\] 称为线性可分支持向量机 如上图所示,o和x分别代表正例和反例,此时的训练集是线性可分的,这时有许多直线能将两类数据正确划分,线性可分的SVM对应着能将两类数据正确划分且间隔最大的直线. 函数…
机器学习:SVM(核函数、高斯核函数RBF)
一.核函数(Kernel Function) 1)格式 K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x'.y',K(x, y) 就是返回新的样本经过计算得到的值: 在 SVM 类型的算法 SVC() 中,K(x, y) 返回点乘:x' . y' 得到的值: 2)多项式核函数 业务问题:怎么分类非线性可分的样本的分类? 内部实现: 对传入的样本数据点添加多项式项: 新的样本数据点进行点乘,返回点乘结果: 多项式特征的基本原理:依靠升维使得原本线性不可分的数据线性可分: 升维的…
支持向量机 (二): 软间隔 svm 与 核函数
软间隔最大化(线性不可分类svm) 上一篇求解出来的间隔被称为 "硬间隔(hard margin)",其可以将所有样本点划分正确且都在间隔边界之外,即所有样本点都满足 \(y_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b) \geqslant 1\) . 但硬间隔有两个缺点:1. 不适用于线性不可分数据集. 2. 对离群点(outlier)敏感. 比如下图就无法找到一个超平面将蓝点和紫点完全分开: 下图显示加入了一个离群点后,超平面发生了…