https://zhidao.baidu.com/question/565190261749684764.html 回归平方和 ESS,残差平方和 RSS,总体平方和 TSS   总变差          (TSS):被解释变量Y的观测值与其平均值的离差平方和(总平方和)(说明 Y 的总变动程度) 解释了的变差          (ESS):被解释变量Y的估计值与其平均值的离差平方和(回归平方和) 剩余平方和         (RSS):被解释变量观测值与估计值之差的平方和(未解释的平方和) 他…
费马平方和定理 费马平方和定理的表述是:奇素数能表示为两个平方数之和的充分必要条件是该素数被4除余1. 1. 如果两个整数都能表示为两个平方数之和的形式,则他们的积也能表示为两个平方数之和的形式. $$\begin{aligned}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) &=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2} \\ &=\left(a^{2} c^{2}+b^{2} d^{…
回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出. 那么,什么是线性回归,什么是非线性回归呢? 线性回归与非线性回归 前面说了,我们的回归模型是一个函数是吧,那么线性回归就是模型函数是由若干个基本函数线性加权得到的函数.也就是每一个基本函数前面都有一个权值来调和自己对…
前言: 场景感知其实不分三维场景和二维场景,可以使用通用的方法,不同之处在于数据的形式,以及导致前期特征提取及后期在线场景分割过程.场景感知即是场景语义分析问题,即分析场景中物体的特征组合与相应场景的关系,可以理解为一个通常的模式识别问题. 论文系列对稀疏编码介绍比较详细...本文经过少量修改和注释,如有不适,请移步原文 code下载:http://www.ifp.illinois.edu/~jyang29/ScSPM.htm 如有评论,请拜访原文.原文链接:http://blog.csdn.n…
转自:http://www.cnblogs.com/zgw21cn/archive/2009/01/07/1361287.html 1.多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型.即  (1.1) 其中为被解释变量,为个解释变量,为个未知参数,为随机误差项. 被解释变量的期望值与解释变量的线性方程为:  (1.2) 称为多元总体线性回归方程,简称总体回归方程. 对于组观测值,其方程组形式为:  (1.3) 即 其矩阵形式为 =+…
1. 普通线性回归 Linear Regression (1)目标: class sklearn.linear_model.LinearRegression (fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)  (2)参数: (3)sklearn的三个坑 [1]均方误差为负 我们在决策树和随机森林中都提到过,虽然均方误差永远为正,但是sklearn中的参数scoring下,均方误差作为评 判标准时,却是计算”负均方误差“(…
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1,  x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义…
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表示向量元素的平方和再开平方 在p范数下定义的单位球(unit ball)都是凸集(convex set,简单地说,若集合A中任意两点的连线段上的点也在集合A中,则A是凸集),但是当0<p<1时,在该定义下的unit ball并不是凸集(注意:我们没说在该范数定义下,因为如前所述,0<p<…
成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差.模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test errors). 我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据最接近就是最佳拟合.对模型的拟合度进行评估的函数称为残差平方和(residual sum of squares)成本函数.就是让所有训练数据与模型的残差的平方之和最小. 我们用R方(r-squared)评估预测的效…
转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更聪明,更人性化的技术,机器学习. – 埃里克 施密特(谷歌首席执行官) 当计算从大型计算机转移至个人电脑再转移到云的今天,我们可能正处于人类历史上最关键的时期.之所以关键,并不是因为已经取得的成就,而是未来几年里我们即将要获得的进步和成就. 对我来说,如今最令我激动的就是计算技术和工具的普及,从而带…