pandas之时间序列笔记】的更多相关文章

时间戳tiimestamp:固定的时刻->pd.Timestamp 固定时期period:比如2016年3月份,再如2015年销售额->pd.Period 时间间隔interval:由起始时间和结束时间来表示,固定时期是时间间隔的一个特殊 时间日期在Pandas里的作用:分析金融数据,如股票交易数据 import pandas as pd import numpy as np # 处理时间需要用到的包 from datetime import datetime from datetime im…
目录 zip Importing & exporting data Plotting with pandas Visual exploratory data analysis 折线图 散点图 panadas hist pdf cdf Statistical exploratory data analysis descripe Separating populations resample() .str.contains() 时区处理方法 导入和处理数据hon drop() 总结 或许可以对比一些…
1. 时间序列自动生成 ts = pd.Series(np.arange(1, 901), index=pd.date_range('2010-1-1', periods=900)) 最终生成了从2010-01-01至2012-06-18的时间索引和对应值. 2010-01-01 1 2010-01-02 2 2010-01-03 3 2010-01-04 4 2010-01-05 5 ... 2012-06-14 896 2012-06-15 897 2012-06-16 898 2012-0…
Pandas基本介绍——DataFrame入门学习 前篇文章中,小生初步介绍pandas库中的Series结构的创建与运算,今天小生继续“死磕自己”为大家介绍pandas库的另一种最为常见的数据结构DataFrame. DataFrame是二维标记的数据结构(三维结构请看Panel,后面为大家介绍),你可以把它看成一张电子表格或者SQL关系库中的表格.DataFrame是pandas库中最为常见的一种数据结构,正如Series一样,它也有很多不同的创建方法: Dict of 1D ndarray…
我正以Python作为突破口,入门机器学习相关知识.出于机器学习实践过程中的需要,我快速了解了一下提供了类似关系型或标签型数据结构的Pandas的使用方法.下面记录相关学习笔记. 数据结构 Pandas最主要的知识点是两个数据结构,分别是Series和DataFrame.你可以分别把它们简单地理解为带标签的一维数组和二维数组. 以下实践假设已经运行了必要的import语句,如: import pandas as pd Series 先在命令行里面看一下Series的样子:   可以看到Serie…
六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs) rolling_median 移动窗口的中位数 pandas.rolling_median(arg, window, min_periods=None, freq=None, center=False, how='…
五.重采样与频率转换 1. resample方法 rng = pd.date_range('1/3/2019',periods=1000,freq='D') rng 2. 降采样 (1)resample将高频率数据聚合到低频率 举例:已知:‘1分钟’数据,想要通过求和的方式将这些数据聚合到“5分钟”块中 left:[0:5).[5:10).[10-15) right :(0:5].(5:10].(10-15] 传入的频率将会以“5分钟”的增量定义面元边界.默认情况下,面元的右边界是包含的,因此0…
1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:parser.parse datetime.date:date对象 import datetime #也可以写成 from datetime import date today = datetime.date.today() print(today, type(today)) #2018-08-21 <…
一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_range(start='2019-04-01',periods=20) dates 用这20个索引作为ts的索引 ts = pd.Series(np.random.randn(20),index=dates) ts 不同索引的时间序列之间的算术运算在日期上自动对齐 ts + ts[::2] pandas使…
  Pandas库是处理时间序列的利器,pandas有着强大的日期数据处理功能,可以按日期筛选数据.按日期显示数据.按日期统计数据.   pandas的实际类型主要分为: timestamp(时间戳) period(时期) timedelta(时间间隔) 常用的日期处理函数有: pd.to_datetime() pd.to_period() pd.date_range() pd.period_range resample 一.定义时间格式 1. pd.Timestamp().pd.Timedel…