背景 假设现在有个商品点击预测的任务,有用户端特征性别.年龄.消费力等,商品侧特征价格.销量等,样本为0或者1,现在对特征进行one hot encode,如性别特征用二维表示,男为[1,0],女为[0,1],其他特征相同处理后拼接起来一共有n维,n是所有特征的类别数之和. Logistic Regression(LR)与二阶 线性模型,y = sigmoid(w, x),w有n维,优点是简单易解释,缺点是太简单,无法挖掘特征组合的情况,如男性+游戏类商品可能是个很强特征.为了弥补这个缺点往往需…
与Policy Gradients的不同之处在于,这两个算法评估某个状态s执行某个动作a的期望奖励,即Q(s,a) Q(s,a) 有两种方法计算方法,第一种直接查表或者模型预估,Q(s, a) = checkTable(s, a),这个在训练初期是非常不准确的:第二种方法是通过"一步蒙特卡洛"方法获取,假设执行a后状态是s',且s'执行了动作了a',Q’(s, a) = 当前状态奖励 + 衰减系数 * Q(s',a'),近似于一个动态规划问题,当游戏结束,就只有当前状态奖励.但与动态规…
RNN 一般神经网络隐层的计算是h=g(w * x),其中g是激活函数,相比于一般神经网络,RNN需要考虑之前序列的信息,因此它的隐藏h的计算除了当前输入还要考虑上一个状态的隐藏,h=g(w*x+w'*h'),其中h'是上一次计算的隐层,可见信息传递是通过隐层完成的. LSTM 有上面普通RNN可以知道,每个状态下的RNN输入实际有两个,上一个隐藏h'以及当前输入x.RNN有个问题是对序列中的各个状态都是等同对待的,如果某个状态很重要,是无法长期影响后面的输出的.LSTM为了解决这个问题提出了类…
DQN利用深度学习对Q-learning的一个扩展,回顾上篇文章,Q-learning的核心在于Q(s,a)的建模.如果状态s非常复杂,很难通过一张表来存储所有的状态. 深度学习正好可以自动提取s的特征,所以我们只需要对Q(s,a)建立一个深度学习网络 但是s可能是一个极高维度的向量,a可能只低维度向量(如上下左右),建模起来可能有点困难 解决的办法是,对每个动作a都建一个网络.因为对于每个网络的a输入的是个固定值,没有任何信息量可以忽略掉,问题就可以简化为对每个动作建立一个网络来表示Q(s)…
强化学习与监督学习的区别在于,监督学习的每条样本都有一个独立的label,而强化学习的奖励(label)是有延后性,往往需要等这个回合结束才知道输赢 Policy Gradients(PG)计算某个状态下所有策略的分布概率,类似于经典分类问题给每个类别预测一个概率,好的PG应该给优良的策略分配较高的概率 PG基于以下假定: 如果只在游戏终结时才有奖励和惩罚,该回合赢了,这个回合的所有样本都是有""偏正的",反之则该回合所有样本都是“偏负的” 距离赢的那刻越近,贡献越大,越远贡…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]如果你对智能推荐感兴趣,欢迎先浏览我的另一篇随笔:智能推荐算法演变及学习笔记 [最后再说一下]本文只对智能推荐算法中的CTR预估模型演变进行具体介绍! 一.传统CTR预估模型演变 1. LR 即逻辑回归.LR模型先求得各特征的加权和,再添加sigmoid函数. 使用各特征的加权和,是为了考虑不同特征的重要程度 使用sigmoid函数,是为了将值映射到 [0, 1…
https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏.购买等.本文以点击率(CTR)预估为例,介绍常用的CTR预估模型,试图找出它们之间的关联和演化规律. 数据特点 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特…
原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张伟楠博士在携程深度学习Meetup[1]上分享了Talk<Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction in Display Ads>.他在2016 ECIR发表…
众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有一定的内在关联性.比如,图像中会有大量的像素与周围的像素比较类似:文本数据中语言会受到语法规则的限制.CNN对于空间特征有很好的学习能力,正如RNN对于时序特征有强大的表示能力一样,因此CNN和RNN在上述领域各领风骚好多年. 在Web-scale的搜索.推荐和广告系统中,特征数据具有高维.稀疏.多…
从FM推演各深度CTR预估模型(附代码) 2018年07月13日 15:04:34 阅读数:584 作者: 龙心尘 && 寒小阳 时间:2018年7月 出处: 龙心尘 寒小阳…