首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
我搭的神经网络不work该怎么办!看看这11条新手最容易犯的错误
】的更多相关文章
我搭的神经网络不work该怎么办!看看这11条新手最容易犯的错误
1. 忘了数据规范化 2. 没有检查结果 3. 忘了数据预处理 4. 忘了正则化 5. 设置了过大的批次大小 6. 使用了不适当的学习率 7. 在最后一层使用了错误的激活函数 8. 网络含有不良梯度 9. 没有正确地初始化网络权重 10. 神经网络太深了 11. 隐藏unit的数量不对 12.补充 1. 忘了数据规范化 在使用神经网络的过程中,非常重要的一点是要考虑好怎样规范化(normalize)你的数据.这一步不能马虎,不正确.仔细完成规范化的话,你的网络将会不能正常工作. 因为规范化数据这…
[DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道理嘛.其实这些个框架一通百通,就是语法不一样了些.从tensorflow开始吧. 关于tf的安装详见另一篇博文,此处tensorflow的学习基本来自Udacity中google的深度学习课程. 1:tensorflow的计算图 在tensorflow中编写代码可以分成两个部分,首先是要定义一个计算…
lecture5-对象识别与卷积神经网络
Hinton第五课 突然不知道object recognition 该翻译成对象识别好,还是目标识别好,还是物体识别好,但是鉴于范围性,还是翻译成对象识别吧.这一课附带了两个论文<Convolutional Networks for Images,Speech,and Time-series>在前面翻译过:http://blog.csdn.net/shouhuxianjian/article/details/40832953和<Gradient-based learning applie…
人工神经网络(Artificial Neural Networks)
人工神经网络的产生一定程度上受生物学的启发,因为生物的学习系统是由相互连接的神经元相互连接的神经元组成的复杂网络.而人工神经网络跟这个差不多,它是一系列简单的单元相互密集连接而成的.其中每个单元有一定数量的输入(可能是其他单元的输出),并产生单一的实数值输出(可能成为其他单元的输入). 常见的人工神经网络结果如下图: (1) 网络由三部分组成,输入层.隐藏层和输出层,往往隐藏层只有1层或2层: (2) 每层由若干个单元组成,所有单元分层互连形成一个无环的前馈网络: (3) 下一层的某个单元的输入…
Neural Networks and Deep Learning(神经网络与深度学习) - 学习笔记
catalogue . 引言 . 感知器及激活函数 . 代价函数(loss function) . 用梯度下降法来学习-Learning with gradient descent . 用反向传播调整神经网络中逐层所有神经元的超参数 . 过拟合问题 . IMPLEMENTING A NEURAL NETWORK FROM SCRATCH IN PYTHON – AN INTRODUCTION 0. 引言 0x1: 神经网络的分层神经元意味着什么 为了解释这个问题,我们先从一个我们熟悉的场景开始说…
神经网络中的偏置项b到底是什么?
原文地址:https://blog.csdn.net/Uwr44UOuQcNsUQb60zk2/article/details/81074408 前言 很多人不明白为什么要在神经网络.逻辑回归中要在样本X的最前面加一个1,使得 X=[x1,x2,…,xn] 变成 X=[1,x1,x2,…,xn] .因此可能会犯各种错误,比如漏了这个1,或者错误的将这个1加到W·X的结果上,导致模型出各种bug甚至无法收敛.究其原因,还是没有理解这个偏置项的作用啦. 在文章<逻辑回归>…
Ng第九课:神经网络的学习(Neural Networks: Learning)
9.1 代价函数 9.2 反向传播算法 9.3 反向传播算法的直观理解 9.4 实现注意:展开参数 9.5 梯度检验 9.6 随机初始化 9.7 综合起来 9.8 自主驾驶 9.1 代价函数 首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有 m 个,每个包含一组输入 x 和一组输出信号 y,L 表示神经网络层数, 表示每层的 neuron 个数,SL 表示输出层神经元个数 将神经网络的分类定义为两种情况:二类分类和多类分类, 二类分类:=1, y=0 or 1…
Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
CS231n课程笔记翻译8:神经网络笔记 part3
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 3,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改.译文含公式和代码,建议PC端阅读. 原文如下 内容列表: 梯度检查 合理性(Sanity)检查 检查学习过程 损失函数 训练集与验证集准确率 权重:更新比例 每层的激活数据与梯度分布 可视化 译者注:上篇翻译截止处 参数更新 一阶(随机梯度下降)方法,动量方法,Nesterov动量方法 学习率退火 二阶方…
【cs231n】神经网络学习笔记3
+ mu) * v # 位置更新变了形式 对于NAG(Nesterov's Accelerated Momentum)的来源和数学公式推导,我们推荐以下的拓展阅读: Yoshua Bengio的Advances in optimizing Recurrent Networks,Section 3.5. Ilya Sutskever's thesis (pdf)在section 7.2对于这个主题有更详尽的阐述. 学习率退火 在训练深度网络的时候,让学习率随着时间退火通常是有帮助的.可以这样理解:…