微软数据挖掘算法:Microsoft 目录篇 介绍: Microsoft 决策树算法是分类和回归算法,用于对离散和连续属性进行预测性建模. 对于离散属性,该算法根据数据集中输入列之间的关系进行预测. 它使用这些列的值(也称之为状态)预测指定为可预测的列的状态. 具体地说,该算法标识与可预测列相关的输入列. 例如,在预测哪些客户可能购买自行车的方案中,假如在十名年轻客户中有九名购买了自行车,但在十名年龄较大的客户中只有两名购买了自行车,则该算法从中推断出年龄是自行车购买情况的最佳预测因子. 决策树…
前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:微软数据挖掘算法:Microsoft 决策树分析算法(1).微软数据挖掘算法:Microsoft 聚类分析算法(2).微软数据挖掘算法:Microsoft Naive Bayes 算法(3).微软数据挖掘算法:Microsoft 时序算法(5),后续还补充了二篇微软数据挖掘算法:结果预测篇(4).微软数据挖掘算法:Microsoft 时序算法之结果预测及其彩票预测(6),看样子有必要整理一篇目录了,不同的算法应用的场景也是不同的,每…
随着大数据时代的到来,数据挖掘的重要性就变得显而易见,几种作为最低层的简单的数据挖掘算法,现在利用微软数据案例库做一个简要总结. 应用场景介绍 其实数据挖掘应用的场景无处不在,很多的环境都会应用到数据挖掘,之前我们没有应用是因为还没有学会利用数据,或者说还没有体会到数据的重要性,现在随着IT行业中大数据时代的到来,让我一起去拥抱大数据,闲言少叙,此处我们就列举一个最简单的场景,一个销售厂商根据以往的销售记录单,通过数据挖掘技术预测出一份可能会购买该厂商产品的客户名单,我相信这也是很多销售机构想要…
本系列文章主要是涉及内容为微软商业智能(BI)中一系列数据挖掘算法的总结,其中涵盖各个算法的特点.应用场景.准确性验证以及结果预测操作等,所采用的案例数据库为微软的官方数据仓库案例(AdventureWorksDW2008R2),数据库基于Microsoft SQL Server 2008,主要涉及DM模块,目录整理如下: 微软数据挖掘算法:Microsoft 决策树分析算法(1) 微软数据挖掘算法:Microsoft 聚类分析算法(2) 微软数据挖掘算法:Microsoft Naive Bay…
前言 有段时间没有进行我们的微软数据挖掘算法系列了,最近手头有点忙,鉴于上一篇的神经网络分析算法原理篇后,本篇将是一个实操篇,当然前面我们总结了其它的微软一系列算法,为了方便大家阅读,我特地整理了一篇目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,我打算将微软商业智能中在DM这块所用到的算法全部集中在这个系列中,每篇包含简要算法原理.算法特点.应用场景以及具体的操作详细步骤,基本能涵盖大部分的商业数据挖掘的应用场景,有兴趣的童鞋可以点击查阅.本篇我们将要总结的算法为:Microsoft…
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇文章的能给出的只是一个描述趋势的折线图,从图中我们能分析出的知识也只能通过语言描述,而这里面缺少更确切的数据支撑,作为一个凡事以数据说话的年代显然这是不够的,本篇我们将根据上一篇的预…
前言 本篇文章同样是继续微软系列挖掘算法总结,前几篇主要是基于状态离散值或连续值进行推测和预测,所用的算法主要是三种:Microsoft决策树分析算法.Microsoft聚类分析算法.Microsoft Naive Bayes 算法,当然后续还补充了一篇结果预测篇,所涉及的应用场景在前几篇文章中也有介绍,有兴趣的同学可以点击查看,本篇我们将总结的算法为Microsoft时序算法,此算法也是数据挖掘算法中比较重要的一款,因为所有的推算和预测都将利用于未来,而这所有的一切都将有一条时间线贯穿始终,而…
介绍: Microsoft 聚类分析算法是一种"分段"或"聚类分析"算法,它遍历数据集中的事例,以将它们分组到包含相似特征的分类中. 在浏览数据.标识数据中的异常及创建预测时,这些分组十分有用. 聚类分析模型标识数据集中可能无法通过随意观察在逻辑上得出的关系. 例如,轻松就能猜想到,骑自行车上下班的人的居住地点通常离其工作地点不远. 但该算法可以找出有关骑自行车上下班人员的其他并不明显的特征. 在下面的关系图中,分类 A 表示有关通常开车上班人员的数据,而分类 B…
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,本篇我们将要总结的算法为:Microsoft顺序分析和聚类分析算法,此算法为上一篇中的关联规则分析算法的一个延伸,为关联规则分析算法所形成的种类进行了更细粒度的挖掘,挖掘出不同种类内部的事例间的顺序原则,进而用以引导用户进行消费. 应用场景介绍 Microsoft顺序分析和聚类分析算法,根据…
介绍: Microsoft Naive Bayes 算法是一种基于贝叶斯定理的分类算法,可用于探索性和预测性建模. Naïve Bayes 名称中的 Naïve 一词派生自这样一个事实:该算法使用贝叶斯技术,但未将可能存在的依赖关系考虑在内. 和其他 Microsoft 算法相比,此算法所需运算量较少,因而有助于快速生成挖掘模型,从而发现输入列与可预测列之间的关系. 可以使用该算法进行初始数据探测,然后根据该算法的结果使用其他运算量较大.更加精确的算法创建其他挖掘模型. 算法的原理 在给定可预测…