基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211264个参数,第四个输出层1024x10=10240个参数,总量级为330万个参数,单机训练时间约为30分钟. 关于优化算法:随机梯度下降法的learning rate需要逐渐变小,因为随机抽取样本引入了噪音,使得我们在最小点处的随机梯度仍然不为0.对于batch gradient descent不…
设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图 两个卷积层, 第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1*2-3)/1+1=28,即6个28*28的feature map 在后面进行池化,尺寸变为14*14 第二层卷积层使用16个5*5的kernel,步长为1,无填充,得到(14-5)/1+1=10,即16个10*10的feature map 池化后尺寸为5*5 后面加两层全连接层,第一层将16*5*5…
如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统) 一.环境配置 1. Python3.7.x(注:我用的是3.7.3.安装好后把python.exe的路径加入到全局环境变量path中,方便后续命令) 2. Tensorflow1.13.1(注:目前暂时还不能用tensorflow2.x,因为开源社区还没有针对Windows10+tensorflow2.x的object_detection api参考资料.) 3. P…
机器学习算法(二): 基于鸢尾花数据集的朴素贝叶斯(Naive Bayes)预测分类 项目链接参考:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 1. 实验室介绍 1.1 实验环境 1. python3.7 2. numpy >= '1.16.4' 3. sklearn >= '0.23.1' 1.2 朴素贝叶斯的介绍 朴素贝叶斯算法(Naive Bayes, NB) 是应用最为广泛的分类算法之一.它是基于贝叶斯定义…
1.机器学习算法(六)基于天气数据集的XGBoost分类预测 1.1 XGBoost的介绍与应用 XGBoost是2016年由华盛顿大学陈天奇老师带领开发的一个可扩展机器学习系统.严格意义上讲XGBoost并不是一种模型,而是一个可供用户轻松解决分类.回归或排序问题的软件包.它内部实现了梯度提升树(GBDT)模型,并对模型中的算法进行了诸多优化,在取得高精度的同时又保持了极快的速度,在一段时间内成为了国内外数据挖掘.机器学习领域中的大规模杀伤性武器. 更重要的是,XGBoost在系统优化和机器学…
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10.因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码. 训练过程 1.训练过程中…
基于Xilinx Zynq Z7045 SoC的CNN的视觉识别应用 由 judyzhong 于 星期三, 08/16/2017 - 14:56 发表 作者:stark 近些年来随着科学技术的不断进步,人工智能(AI)正在逐步从尖端技术变得普及.人工智能的发展涉及物联网.大规模并行计算.大数据以及深度学习算法等领域,深度学习是人工智能进步最重要的因素,它也是当前人工智能最先进.应用最广泛的核心技术.作为人工智能技术理想的应用领域,自动驾驶以及智能交通系统受到了人们广泛的关注.很多汽车企业都加入自…
SpringBoot整合Shiro实现基于角色的权限访问控制(RBAC)系统简单设计从零搭建 技术栈 : SpringBoot + shiro + jpa + freemark ,因为篇幅原因,这里只贴了部分代码说明,完整项目地址 : https://github.com/EalenXie/shiro-rbac-system 1 . 新建一个项目名为shiro-rbac-system,pom.xml加入基本依赖 : <?xml version="1.0" encoding=&qu…
LinFx 一个基于 .NET Core 2.0 开发的简单易用的快速开发框架,遵循领域驱动设计(DDD)规范约束,提供实现事件驱动.事件回溯.响应式等特性的基础设施.让开发者享受到正真意义的面向对象设计模式来带的美感. LinFx.Extensions Caching.DapperExtensions.Elasticsearch.EventBus.Metrics.Mongo.RabbitMQ 特性 领域驱动设计(DDD) 事件驱动架构 (EDA) 事件回溯 (ES) 最终一致性 (Eventu…
基于C++11的100行实现简单线程池 1 线程池原理 线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务.线程池线程都是后台线程.每个线程都使用默认的堆栈大小,以默认的优先级运行,并处于多线程单元中. 线程池组成部分: 线程池管理器:用于创建并管理线程池 工作线程: 线程池中实际执行的线程 任务接口: 尽管线程池大多数情况下是用来支持网络服务器,但是我们将线程执行的任务抽象出来,形成任务接口,从而是的线程池与具体的任务无关. 任务队列:线程池的概念具体到实…