本篇围绕“深度渲染混合模型”展开. Lecture slices Lecture video Reading list A Probabilistic Framework for Deep Learning Semi-Supervised Learning with the Deep Rendering Mixture Model A Probabilistic Theory of Deep Learning 13:49 / 1:30:37 GAN的统计意义:统计假设检验 GAN 一定意义上成为…
Theories of Deep Learning 借该课程,进入战略要地的局部战斗中,采用红色字体表示值得深究的概念,以及想起的一些需要注意的地方. Lecture 01 Lecture01: Deep Learning Challenge. Is There Theory? (Donoho/Monajemi/Papyan) Video link 纯粹的简介,意义不大. Lecture 02 Video: Stats385 - Theories of Deep Learning - David…
大咖秀,注意提问环节大家的表情,深入窥探大咖的心态,很有意思. 之前有NG做访谈,现在这成了学术圈流行. Video: https://www.youtube.com/watch?v=oCohnBbmpLA Lecture: https://stats385.github.io/assets/lectures/bolcskei-stats385-slides.pdf 调和分析 reading list:https://www.zhihu.com/question/28661999 先提及了核方法…
Lecturer 咖中咖 Tomaso A. Poggio Lecture slice Lecture video 三个基本问题: Approximation Theory: When and why are deep networks better than shallow networks? Optimization: What is the landscape of the empirical risk? Learning Theory: How can deep learning not…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件概率分布等等. 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后验分布下的期望.这些任务往往需要积分或求和操作. 但在很多情况下,计算这些东西往往不那么容易.因为首先,我们积分中涉及的分布可能有很复杂的形式,这样就无法直接得到解析解,而我们当然希望分布是类似指数族分布这样具有共轭分…
优化算法-BFGS BGFS是一种准牛顿算法, 所谓的"准"是指牛顿算法会使用Hessian矩阵来进行优化, 但是直接计算Hessian矩阵比较麻烦, 所以很多算法会使用近似的Hessian, 这些算法就称作准牛顿算法(Quasi Newton Algorithm). 1. 牛顿算法(Newton Algorithm) 牛顿算法考虑了函数的二阶单数, 是一种二阶优化方法, 并且是所有其他二阶优化方法的鼻祖. 作为对比, 梯度下降(Gradient Descent)只考虑了函数的一阶导数…
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | KDnuggets 作者 | Ajit Jaokar 转自 | 新智元 编辑 | 大明 [编者按]机器学习和数据科学离不开数学,本文从数学基础的角度入手,推荐了数据科学和机器学习方面的七本参考书以及两本补充读物.相信对打好数学基础的相关人士会有所帮助. 大多数人学习数据科学的人都会把重点放在编程上,实际上编程能力确实是机器学习和数据科学领域的重要技能.但是,要真正精通数据科学和机器学习,必…