本篇围绕“深度渲染混合模型”展开. Lecture slices Lecture video Reading list A Probabilistic Framework for Deep Learning Semi-Supervised Learning with the Deep Rendering Mixture Model A Probabilistic Theory of Deep Learning 13:49 / 1:30:37 GAN的统计意义:统计假设检验 GAN 一定意义上成为…
Theories of Deep Learning 借该课程,进入战略要地的局部战斗中,采用红色字体表示值得深究的概念,以及想起的一些需要注意的地方. Lecture 01 Lecture01: Deep Learning Challenge. Is There Theory? (Donoho/Monajemi/Papyan) Video link 纯粹的简介,意义不大. Lecture 02 Video: Stats385 - Theories of Deep Learning - David…
Lecturer 咖中咖 Tomaso A. Poggio Lecture slice Lecture video 三个基本问题: Approximation Theory: When and why are deep networks better than shallow networks? Optimization: What is the landscape of the empirical risk? Learning Theory: How can deep learning not…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…