在递归的时候,和数学的归纳法一致. void func( mode) { if(endCondition) { constExpression //基本项 } else { accumrateExpreesion //归纳项 mode=expression //步进表达式 func(mode) //调用本身,递归 } } 回文是一种字符串,它正着读和反着读都是一样的.比如level,eye都是回文.用迭代的方法可以很快地判断一个字符串是否为回文.用递归的方法如何来实现呢 #include"ios…
Go递归实现汉诺塔 package main import "fmt" // a 是源,b 借助, c 目的长度 func tower(a, b, c string, layer int) { if layer == 1 { fmt.Println(a, "111->", c) return } // n-1 个 a 借助 c 到 b tower(a, c, b, layer-1) fmt.Println(a, "11->", c)…
Python递归实现汉诺塔: def f3(n,x,y,z): if(n==1): print(x,'--->',z) else: f3(n-1,x,z,y) print(x,'--->',z) f3(n-1,y,x,z) n=int(input('请输入汉罗塔层数:')) f3(n,'X','Y','Z') 运行结果如下:…
package 汉诺塔; //引入Scanner包,用于用户输入 import java.util.Scanner; public class 汉诺塔算法 { public static void main(String[] args) { //建立一个Scanner类的对象a        Scanner a=new Scanner(System.in);          System.out.print("请输入盘数:");          //用n接收用户输入的盘数    …
知识点 这节课主要讲解用递归的方法,实现汉诺塔的解答 对于游戏的玩法,我们可以简单分解为三个步骤: 1) 将前63个盘子从X移动到Y上. 2) 将最底下的第64个盘子从X移动到Z上. 3) 将Y上的63个盘子移动到Z上. 问题一:将X上的63个盘子借助Z移到Y上: 1) 将前62个盘子从X移动到Z上. 2) 将最底下的第63个盘子移动到Y上. 3) 将Z上的62个盘子移动到Y上. 问题二:将Y上的63个盘子借助X移到Z上. 1) 将前62个盘子从Y移动到X上. 2) 将最底下的第63个盘子移动到…
#include <iostream> //从A到C using namespace std; int n; void ready() { cout << "请输入汉诺塔高度:"; cin >> n; cout << "默认从A移动到C" << endl; } void move_recursion(int n, char des, char now, char temp) { if (n == 1) {…
已经不是第一次写这个汉诺塔问题, 其实递归还真是不太好理解, 因为递归这种是想其实有点反人类, 为什么? 因为不太清楚, 写个循环一目了然, 用递归其实要把核心逻辑理清楚, 要不根本没法进行下去 所有才有了俗语:人用循环, 神用递归. 看来我也是普通人啊, 这个汉诺塔问题是递归必将的案例, 但是没有一个讲的很清楚的, 大部分都是把原理说了一遍, 还是需要自己来思考 反正我写了半天, 也没有自己搞出来, 大家不要笑我, 我是学工商管理的, 递归 说白了了就是数学归纳法, lz数学还是不错的, 所有…
C++实现汉诺塔 #include <iostream> using namespace std; void move(int n,char x,char y,char z) { ) { cout<<x<<"--->"<<z<<endl; } else { move(n-,x,z,y); cout<<x<<"--->"<<z<<endl; move…
游戏链接:https://zhangxiaoleiv.github.io/app/TowerOfHanoi/Hanoi.html 汉诺塔游戏算法: 1 def hanoi(n,x,y,z): 2 if n == 1: 3 print(x,"-->",z) 4 else: 5 hanoi(n-1,x,z,y) # 将上面的n-1个,从x移动到y 6 print(x,"-->",z) # 将最下面的一个,从x移动到z 7 hanoi(n-1,y,x,z) #…
def move(n,a,b,c): if (n == 1): print ( "第 ", n ," 步: 将盘子由 " ,a ," 移动到 " ,c) #return else: move(n-1,a,c,b) #首先需要把 (N-1) 个圆盘移动到 b print ("A==>b") move(1,a,b,c) #将a的最后一个圆盘移动到c move(n-1,b,a,c) #再将b的(N-1)个圆盘移动到c prin…