首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
spark机器学习从0到1机器学习工作流 (十一)
】的更多相关文章
spark机器学习从0到1机器学习工作流 (十一)
一.概念 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉验证,新数据预测等步骤. MLlib标准化了用于机器学习算法的API,从而使将多种算法组合到单个管道或工作流程中变得更加容易. 本节介绍了Pipelines API引入的关键概念,其中PipeLine(管道)概念主要受scikit-learn项目的启发. 在介绍工作流之前,我们先来了解几个重要概念:…
spark机器学习从0到1特征提取 TF-IDF(十二)
一.概念 “词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度. 词语由t表示,文档由d表示,语料库由D表示.词频TF(t,d)是词语t在文档d中出现的次数.文件频率DF(t,D)是包含词语的文档的个数.如果我们只使用词频来衡量重要性,很容易过度强调在文档中经常出现,却没有太多实际信息的词语,比如“a”,“the”以及“of”.如果一个词语经常出现在语料库中,意味着它并不能很好的对文档进行区分.TF-IDF就是在数…
Spark学习之基于MLlib的机器学习
Spark学习之基于MLlib的机器学习 1. 机器学习算法尝试根据训练数据(training data)使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定. 2. MLlib完成文本分类任务步骤: (1)首先用字符串RDD来表示你的消息 (2)运行MLlib中的一个特征提取(feature extraction)算法来把文本数据转换为数值特征(适合机器学习算法处理):该操作会返回一个向量RDD. (3)对向量RDD调用分类算法(比如逻辑回归):这步会返回一个模型对象,可以使用该对象对…
【原】Coursera—Andrew Ng斯坦福机器学习(0)——课程地址和软件下载
斯坦福大学机器学习 课程信息 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科.最近二十年,机器学习为我们带来了自动驾驶汽车.实用的语音识别.高效的网络搜索,让我们对人类基因的解读能力大大提高.当今机器学习技术已经非常普遍,您很可能在毫无察觉情况下每天使用几十次.许多研究者还认为机器学习是人工智能(AI)取得进展的最有效途径.在本课程中,您将学习最高效的机器学习技术,了解如何使用这些技术,并自己动手实践这些技术.更重要的是,您将不仅将学习理论知识,还将学习如何实践,如何快速使用强大的技…
Apache Spark 2.2.0 中文文档 - 概述 | ApacheCN
Spark 概述 Apache Spark 是一个快速的, 多用途的集群计算系统. 它提供了 Java, Scala, Python 和 R 的高级 API,以及一个支持通用的执行图计算的优化过的引擎. 它还支持一组丰富的高级工具, 包括使用 SQL 处理结构化数据处理的 Spark SQL, 用于机器学习的 MLlib, 用于图形处理的 GraphX, 以及 Spark Streaming. 下载 从该项目官网的 下载页面 获取 Spark. 该文档用于 Spark 2.2.0 版本. Spa…
Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
Apache Spark 2.2.0 中文文档 - SparkR (R on Spark) | ApacheCN
SparkR (R on Spark) 概述 SparkDataFrame 启动: SparkSession 从 RStudio 来启动 创建 SparkDataFrames 从本地的 data frames 来创建 SparkDataFrames 从 Data Sources(数据源)创建 SparkDataFrame 从 Hive tables 来创建 SparkDataFrame SparkDataFrame 操作 Selecting rows(行), columns(列) Groupin…
Apache Spark 2.2.0新特性介绍(转载)
这个版本是 Structured Streaming 的一个重要里程碑,因为其终于可以正式在生产环境中使用,实验标签(experimental tag)已经被移除.在流系统中支持对任意状态进行操作:Apache Kafka 0.10 的 streaming 和 batch API支持读和写操作.除了在 SparkR, MLlib 和 GraphX 里面添加新功能外,该版本更多的工作在系统的可用性(usability).稳定性(stability)以及代码的润色(polish)并解决了超过 110…
Apache Spark 2.2.0 中文文档
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 Spark Shell 进行交互式分析 基础 Dataset 上的更多操作 缓存 独立的应用 快速跳转 本教程提供了如何使用 Spark 的快速入门介绍.首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scal…
Spark学习笔记0——简单了解和技术架构
目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受众 起源和发展 Spark学习笔记0--简单了解和技术架构 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 什么是Spark Spark 是一个用来实现快速而通用的集群计算的平台. 扩展了广泛使用的MapReduce 计算模型 能够在内存中进行计算 一个统一的框架…