C#递归解决汉诺塔问题(Hanoi)】的更多相关文章

using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExample_Hanoi_{    class Program    {        static void Main(string[] args)        {            HanoiCalculator c = new HanoiCalculator();            Cons…
汉诺塔是一个印度的古老传说.有三个圆柱,其中一个圆柱上放着若干圆盘,这些圆盘从上到下,直径递增,利用一个辅助圆柱,将原来柱子上的圆盘放到另一个柱子上,依旧是从上到下直径递增. 汉诺塔是一个经典的递归案例. var hanoi = function(disc,src,aux,dst){ ){ hanoi(disc-,src,dst,aux); document.writeln('Move disc ' + disc + ' from ' + src + ' to ' + dst + "<br…
//汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. #include <stdio.h> #include <stdlib.h> //汉诺塔使用递归可以很轻松但有点抽象的解决. //汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的…
有a,b,c三个柱子,n个盘子. def move(n, a, b, c): if n == 1: print('move', a, '-->', c) else: move(n-1, a, c, b) move(1, a, b, c) move(n-1, b, a, c) move(5, 'A', 'B', 'C') 执行结果为: === RESTART: C:/Users/0923/AppData/Local/Programs/Python/Python37/test.py ===move…
C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽. --图片来源于百度百科 A,B,C三个柱子,当A柱子上只有一个盘子时直接将该盘子从A柱子移…
Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; public class HanoiTower { public static void main(String[] args) { // TODO Auto-generated method stub @SuppressWarnings("resource") Scanner sc=new Sc…
知识点 这节课主要讲解用递归的方法,实现汉诺塔的解答 对于游戏的玩法,我们可以简单分解为三个步骤: 1) 将前63个盘子从X移动到Y上. 2) 将最底下的第64个盘子从X移动到Z上. 3) 将Y上的63个盘子移动到Z上. 问题一:将X上的63个盘子借助Z移到Y上: 1) 将前62个盘子从X移动到Z上. 2) 将最底下的第63个盘子移动到Y上. 3) 将Z上的62个盘子移动到Y上. 问题二:将Y上的63个盘子借助X移到Z上. 1) 将前62个盘子从Y移动到X上. 2) 将最底下的第63个盘子移动到…
Python递归实现汉诺塔: def f3(n,x,y,z): if(n==1): print(x,'--->',z) else: f3(n-1,x,z,y) print(x,'--->',z) f3(n-1,y,x,z) n=int(input('请输入汉罗塔层数:')) f3(n,'X','Y','Z') 运行结果如下:…
Go递归实现汉诺塔 package main import "fmt" // a 是源,b 借助, c 目的长度 func tower(a, b, c string, layer int) { if layer == 1 { fmt.Println(a, "111->", c) return } // n-1 个 a 借助 c 到 b tower(a, c, b, layer-1) fmt.Println(a, "11->", c)…
汉诺塔问题源于印度的一个古老传说:梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.梵天命令婆罗门把圆盘按大小顺序重新摆放在另一根柱子上,并且规定小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘.当所有的黄金圆盘都重新摆放在另一根柱子上时,世界就将在霹雳声中毁灭,梵塔.庙宇和众生都将同归于尽. 假设A是起始柱,B是中间柱,C是目标柱. 从最简单的例子开始看: 如果A柱上只剩一个圆盘,那么将圆盘从A柱移到C柱即可. (A --> C) 如果A柱上剩两…
参考文章:http://www.cnblogs.com/dmego/p/5965835.html   一句话:学程序不是目的,理解就好:写代码也不是必然,省事最好:拿也好,查也好,解决问题就好!   信息时代不用信息就是罪过,直接抄不加理解与应用,就不是自己的,下次遇到还是不会,或许其中的某一个细节就能够用于各个问题的解决,共勉   学习一个东西总会遇到一些经典的问题,学习Python第二天尝试看一下汉诺塔问题,还是百度,看看解题思路,纯粹是重温初中课堂,越活越回去了    汉诺塔的图解递归算法…
前段时间偶然看到有个日本人很早之前写了js的多种排序程序,使用js+html实现的排序动画,效果非常好. 受此启发,我决定写几个js的算法动画,第一个就用汉诺塔. 演示地址:http://tut.ap01.aws.af.cm/visual/hanoi.htm 代码:http://tut.ap01.aws.af.cm/js/hanoi.js 下图为演示界面: 在写界面的时候,才真正理解css中position的用法,之前知道含义,但是不知道搭配的用法. position用法:外层使用relativ…
#include <iostream> //从A到C using namespace std; int n; void ready() { cout << "请输入汉诺塔高度:"; cin >> n; cout << "默认从A移动到C" << endl; } void move_recursion(int n, char des, char now, char temp) { if (n == 1) {…
目前前端新手,看到的不喜勿喷,还望大神指教. 随着Node.js,Angular.js,JQuery的流行,点燃了我学习JavaScript的热情!以后打算每天早上跟晚上抽2小时左右时间将经典的算法都用JS来实现,加快学习JS的步伐(用这个办法方便跟自己以前学过的C++语言作对比,找出不同),希望自己能够坚持下去!!! 首先来个汉诺塔的. <script>      function hanoi(n,a,b,c){          if(n==1){              documen…
已经不是第一次写这个汉诺塔问题, 其实递归还真是不太好理解, 因为递归这种是想其实有点反人类, 为什么? 因为不太清楚, 写个循环一目了然, 用递归其实要把核心逻辑理清楚, 要不根本没法进行下去 所有才有了俗语:人用循环, 神用递归. 看来我也是普通人啊, 这个汉诺塔问题是递归必将的案例, 但是没有一个讲的很清楚的, 大部分都是把原理说了一遍, 还是需要自己来思考 反正我写了半天, 也没有自己搞出来, 大家不要笑我, 我是学工商管理的, 递归 说白了了就是数学归纳法, lz数学还是不错的, 所有…
//汉诺塔问题//HanYang 2016/10/15 import java.util.Scanner; //输出public class Hanuota { public static void Show(String a,String b){  System.out.print(" " + a + "->" + b + " " ); } //从a移到c    public static void Fun(int n, String a…
package 汉诺塔; //引入Scanner包,用于用户输入 import java.util.Scanner; public class 汉诺塔算法 { public static void main(String[] args) { //建立一个Scanner类的对象a        Scanner a=new Scanner(System.in);          System.out.print("请输入盘数:");          //用n接收用户输入的盘数    …
汉诺塔代码: def hanoi(n,x,y,z): if n == 1: print(x,'-->',z) else: hanoi(n-1,x,z,y) print(x,'-->',z) hanoi(n-1,y,x,z) n = int(input('Input your number:')) hanoi(n,'X','Y','Z')…
游戏链接:https://zhangxiaoleiv.github.io/app/TowerOfHanoi/Hanoi.html 汉诺塔游戏算法: 1 def hanoi(n,x,y,z): 2 if n == 1: 3 print(x,"-->",z) 4 else: 5 hanoi(n-1,x,z,y) # 将上面的n-1个,从x移动到y 6 print(x,"-->",z) # 将最下面的一个,从x移动到z 7 hanoi(n-1,y,x,z) #…
今天刚刚在博客园安家,不知道写点什么,前两天刚刚学习完python 所以就用python写了一下汉诺塔算法,感觉还行拿出来分享一下 首先看一下描述: from :http://baike.baidu.com/link?url=fzJdDuawFsjvlLi8vjCMepByo79au3MMyu50GpMN89oj3CzEa00k5giNeuehTfQM 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金…
C++实现汉诺塔 #include <iostream> using namespace std; void move(int n,char x,char y,char z) { ) { cout<<x<<"--->"<<z<<endl; } else { move(n-,x,z,y); cout<<x<<"--->"<<z<<endl; move…
在递归的时候,和数学的归纳法一致. void func( mode) { if(endCondition) { constExpression //基本项 } else { accumrateExpreesion //归纳项 mode=expression //步进表达式 func(mode) //调用本身,递归 } } 回文是一种字符串,它正着读和反着读都是一样的.比如level,eye都是回文.用迭代的方法可以很快地判断一个字符串是否为回文.用递归的方法如何来实现呢 #include"ios…
def move(n,a,b,c): if (n == 1): print ( "第 ", n ," 步: 将盘子由 " ,a ," 移动到 " ,c) #return else: move(n-1,a,c,b) #首先需要把 (N-1) 个圆盘移动到 b print ("A==>b") move(1,a,b,c) #将a的最后一个圆盘移动到c move(n-1,b,a,c) #再将b的(N-1)个圆盘移动到c prin…
def hani(n,x,y,z): if n == 1 : print(x ,"-->",z) else: hani(n-1,x,z,y)#将n-1个盘子从x移到y print(x,"-->",z)# 将第n个盘子从x移到z hani(n-1,y,x,z)#将y上的n-1个盘子从y移到z n = int(input("请输入层数"))hani(n,"x","y","z")…
很难受,看了很多资料才明白..... 对这个问题分析,发现思路如下:有n个黄金盘,要先把n-1个弄到B柱上,再把第n个弄到C柱上,然后把n-1个借助A柱弄到C柱上. 实现的函数如下: void f(int n,char x,char y,char z) {  if(n==1) printf("x to z"); else {  f(n-1,'x','z','y');   //这个函数先进行完再向下进行下一个!! printf("x to z"); f(n-1,'y'…
问题描述: 有一个梵塔,塔内有三个座A.B.C,A座上有诺干个盘子,盘子大小不等,大的在下,小的在上(如图). 把这些个盘子从A座移到C座,中间可以借用B座但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘 子始终保持大盘在下,小盘在上. 描述简化:把A柱上的n个盘子移动到C柱,其中可以借用B柱. #include <bits/stdc++.h> using namespace std; void move(int n, char f, char t) { ; printf("…
目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus is possible for using animation. e.g. if n = 2 ; A→B ; A→C ; B→C; if n = 3; A→C ; A→B ; C→B ; A→C ; B→A ; B→C ; A→C; 翻译:模拟汉诺塔问题的移动规则:获得奖励的移动方法还是有可能的.…
百度测试部2015年10月份的面试题之——汉诺塔. 汉诺塔就是将一摞盘子从一个塔转移到另一个塔的游戏,中间有一个用来过度盘子的辅助塔. 百度百科在此. 游戏试玩在此. 用递归的思想解决汉诺塔问题就是分为两种情况: 第一种情况是只有一个盘子的情况,也就是最基本的情况,这种情况下,直接将该盘子从原始塔转移到目标塔即可胜利: 第二种情况是右n个盘子的情况,也就是普遍情况,这种情况下,要将除了最底下的那个盘子以外的(n-1)个盘子从原始塔转移到辅助塔,再把最底下的那个盘子(第n个盘子)从原始塔转移到目标…
前言 参考<JavaScript语言精粹> 递归是一种强大的编程技术,他把一个问题分解为一组相似的子问题,每一问题都用一个寻常解去解决.递归函数就是会直接或者间接调用自身的一种函数,一般来说,一个递归函数调用自身去解决它的子问题. "汉诺塔"经典递归问题 "汉诺塔"是印度的一个古老传说,也是程序设计中的经典的递归问题,是一个著名的益智游戏: 题目如下: 塔上有三根柱子和一套直径各不相同的空心圆盘,开始时源柱子上的所有圆盘都按从大到小的顺序排列.目标是通过…
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 简单来说目的就是要我们把盘子按照规则从A移到C 二.思路 此处我用递归的思想理解汉诺塔问题.递归的思想容易理解,但是运用在代码上的算法并不是解决汉诺塔问题的最佳算法. 我们初定有n个盘子,…