PyTorch中实现Transformer模型】的更多相关文章

Object Detection and Classification using R-CNNs 目标检测:数据增强(Numpy+Pytorch) - 主要探究检测分割模型数据增强操作有哪些? - 检测分割模型图像输入大小?检测模型Faster rcnn输入较大800+:而ssd则有300,512之分:分割模型一般deeplab使用321,513,769等:输入大小对结果敏感吗? - 检测分割模型的batch-szie都比较小:这对显存消耗很大,和输入大小的关系?本身分割模型deeplab系列就…
转载:https://zhuanlan.zhihu.com/p/53927068 https://blog.csdn.net/wangdongwei0/article/details/88956527 pytorch最后的权重文件是.pth格式的. 经常遇到的问题: 进行finutune时,改配置文件中的学习率,发现程序跑起来后竟然保持了以前的学习率, 并没有使用新的学习率. 原因: 首先查看.pth文件中的内容,我们发现它其实是一个字典格式的文件: 其中保存了optimizer和schedul…
摘要:所谓模型剪枝,其实是一种从神经网络中移除"不必要"权重或偏差的模型压缩技术. 本文分享自华为云社区<模型压缩-pytorch 中的模型剪枝方法实践>,作者:嵌入式视觉. 一,剪枝分类 所谓模型剪枝,其实是一种从神经网络中移除"不必要"权重或偏差(weigths/bias)的模型压缩技术.关于什么参数才是"不必要的",这是一个目前依然在研究的领域. 1.1,非结构化剪枝 非结构化剪枝(Unstructured Puning)是指修…
Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行. 它是由编码组件.解码组件和它们之间的连接组成. 编码组件部分由一堆编码器(6个 encoder)构成.解码组件部分也是由相同数量(与编码器对应)的解码器(decoder)组成的. 所有的编码器在结构上都是相同的,但它们没有共享参数.每个解码器都可以分解成两个子层. BERT大火却不懂Transformer?读这一篇就够了 大数据文摘 1月8日 大数据文摘与百度NLP联合出品 编译:张驰…
2013年----word Embedding 2017年----Transformer 2018年----ELMo.Transformer-decoder.GPT-1.BERT 2019年----Transformer-XL.XLNet.GPT-2 2020年----GPT-3 Transformer 谷歌提出的Transformer模型,用全Attention的结构代替的LSTM,在翻译上取得了更好的成绩.这里基于Attention Is All You Need,对 Transformer…
本篇文章主要教大家如何搭建一个基于Transformer的简单预测模型,并将其用于股票价格预测当中.原代码在文末进行获取.小熊猫的python第二世界 1.Transformer模型 Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,现在比较火热的 Bert 也是基于 Transformer.Transformer 模型使用了 Self-Attention 机制,不采用 RNN 的顺序结构,使得模型可以并行化训练,而且能够拥有全局信息.这篇文章的目的主…
引言 语言模型一直在变大.截至撰写本文时,PaLM 有 5400 亿参数,OPT.GPT-3 和 BLOOM 有大约 1760 亿参数,而且我们仍在继续朝着更大的模型发展.下图总结了最近的一些语言模型的尺寸. 由于这些模型很大,因此它们很难在一般的设备上运行.举个例子,仅推理 BLOOM-176B 模型,你就需要 8 个 80GB A100 GPU (每个约 15,000 美元).而如果要微调 BLOOM-176B 的话,你需要 72 个这样的 GPU!更大的模型,如 PaLM,还需要更多资源.…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xception-master/run 会出来一个网站,复制到浏览器即可可视化loss,acc,lr等数据的变化过程. 举例说明pytorch中设置summary的方式: import argparse import os import numpy as np from tqdm import tqdm…
1 概述 在介绍Transformer模型之前,先来回顾Encoder-Decoder中的Attention.其实质上就是Encoder中隐层输出的加权和,公式如下: 将Attention机制从Encoder-Decoder框架中抽出,进一步抽象化,其本质上如下图 (图片来源:张俊林博客): 以机器翻译为例,我们可以将图中的Key,Value看作是source中的数据,这里的Key和Value是对应的.将图中的Query看作是target中的数据.计算Attention的整个流程大致如下: 1)…