论文从理论的角度出发,对目标检测的域自适应问题进行了深入的研究,基于H-divergence的对抗训练提出了DA Faster R-CNN,从图片级和实例级两种角度进行域对齐,并且加入一致性正则化来学习域不变的RPN.从实验来看,论文的方法十分有效,这是一个很符合实际需求的研究,能解决现实中场景多样,训练数据标注有限的情况.   来源:晓飞的算法工程笔记 公众号 论文: Domain Adaptive Faster R-CNN for Object Detection in the Wild 论…
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR. (2016) YOLO的全拼是You Only Look Once,顾名思义就是只看一次,把目标区域预测和目标类别预测合二为一,作者将目标检测任务看作目标区域预测和类别预测的回归问题.该方法采用单个神经网络直接预测物品边界和类别概率,实现端到端的物品检测.因此识…
一. 导论 SPP-Net是何凯明在基于R-CNN的基础上提出来的目标检测模型,使用SPP-Net可以大幅度提升目标检测的速度,检测同样一张图片当中的所有目标,SPP-Net所花费的时间仅仅是RCNN的百分之一,而且检测的准确率甚至会更高.那么SPP-Net是怎么设计的呢?我们要想理解SPP-Net,先来回顾一下RCNN当中的知识吧.下图为SPP-Net的结构: 二. RCNN rcnn进行目标检测的框架如下: 因此RCNN的步骤如下: 1.将图像输入计算机当中 2.利用selective se…
​ 前言: 目标检测的预测框经过了滑动窗口.selective search.RPN.anchor based等一系列生成方法的发展,到18年开始,开始流行anchor free系列,CornerNet算不上第一篇anchor free的论文,但anchor freee的流行却是从CornerNet开始的,其中体现的一些思想仍值得学习. 看过公众号以往论文解读文章的读者应该能感觉到,以往论文解读中会有不少我自己的话来表述,文章写得也很简练.但这篇论文的写作实在很好,以至于这篇解读文章几乎就是对论…
目标检测中的anchor-based 和anchor free 1.  anchor-free 和 anchor-based 区别 深度学习目标检测通常都被建模成对一些候选区域进行分类和回归的问题.在单阶段检测器中,这些候选区域就是通过滑窗方式产生的 anchor:在两阶段检测器中,候选区域是 RPN 生成的 proposal,但是 RPN 本身仍然是对滑窗方式产生的 anchor 进行分类和回归. anchor-free是通过另外一种手段来解决检测问题的.同样分为两个子问题,即确定物体中心和对…
anchor在计算机视觉中有锚点或锚框,目标检测中常出现的anchor box是锚框,表示固定的参考框. 目标检测的任务: 在哪里有东西 难点: 目标的类别不确定.数量不确定.位置不确定.尺度不确定 传统算法的解决方式: 都要金字塔多尺度+遍历滑窗的方式,逐尺度逐位置判断"这个尺度的这个位置处有没有认识的目标",非常笨重耗时,并不能很好的推广适用. 现状: 近期顶尖(SOTA)的目标检测方法几乎都用了anchor技术 作用: 首先预设一组不同尺度不同位置的固定参考框,覆盖几乎所有位置和…
咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下. 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目标检测中,使用一个矩形的边框来表示.在图像中,可以基于图像坐标系使用多种方式来表示矩形框. 最直接的方式,使用矩形框的左上角和右下角在图像坐标系中的坐标来表示. 使用绝对坐标的\((x_{min},y_{min},x_{max},y_{max})\). 但是这种绝对坐标的表示方式,是以原始图像的像素…
关于目标检测其实我一直也在想下面的两个论断: Receptive Field Is Natural Anchor Receptive Field Is All You Need 只是一直没有实验.但是今天有人正式提出来了: https://github.com/becauseofAI/MobileFace https://arxiv.org/pdf/1904.10633.pdf 用在人脸上,可以达到实时. 作者根据直觉直接说了: Based on above understandings, fa…
论文基于DA Faster R-CNN系列提出类别正则化框架,充分利用多标签分类的弱定位能力以及图片级预测和实例级预测的类一致性,从实验结果来看,类该方法能够很好地提升DA Faster R-CNN系列的性能   来源:晓飞的算法工程笔记 公众号 论文: Exploring Categorical Regularization for Domain Adaptive Object Detection 论文地址:https://arxiv.org/pdf/2003.09152.pdf 论文代码:h…
目标检测之Anchor Free系列 CenterNet(Object as point) 见之前的过的博客 CenterNet笔记 YOLOX 见之前目标检测复习之YOLO系列总结 YOLOX笔记 FCOS solve object detection in a per-pixel prediction fashion, analogue to semantic segmentation Paper Code1: 官方代码 Code2: mmdetectin代码 FCOS总结 对于边界框,进行…