4.keras-交叉熵的介绍和应用】的更多相关文章

视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Mnist分类程序 import numpy as np from keras.datasets import mnist #将会从网络下载mnist数据集 from keras.utils import np_utils from keras.models import Sequential #序列模型 from k…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类.多分类等)任务目标,可以参考文章keras中两种交叉熵损失函数的探讨,其结合keras的API讨论了两者的计算原理和应用原理. 本文主要是介绍TF中的接口调用方式. 一.二分类交叉熵 对应的是网络输出单个节点,这个节点将被sigmoid处理,使用阈值分类为0或者1的问题.此类问题logits和labels必须具有相同的type和shape. 原理介绍 设x…
keras-交叉熵的介绍和应用 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD import os import tensorflow as tf # 载入数据…
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们可能输入了一张图片表示的是苹果,那么对于这张输入图片的真实概率分布为y=(苹果:1,梨子:0),但是我们的模型…
cross entropy 交叉熵的概念网上一大堆了,具体问度娘,这里主要介绍深度学习中,使用交叉熵作为类别分类. 1.二元交叉熵 binary_cross_entropy 我们通常见的交叉熵是二元交叉熵,因为在二分类中的交叉熵可以比较方便画出图像来,如下图,为“二元交叉熵”, 当我们的label标注结果0时,如下图右侧曲线,当预测结果为1时,返回的loss 无穷大,反之,loss 与 label标注结果一致都为0时, loss = 0.  当我们的label标注结果1时, 同理. 2.多元交叉…
https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们…
损失函数 在逻辑回归建立过程中,我们需要一个关于模型参数的可导函数,并且它能够以某种方式衡量模型的效果.这种函数称为损失函数(loss function). 损失函数越小,则模型的预测效果越优.所以我们可以把训练模型问题转化为最小化损失函数的问题. 损失函数有多种,此次介绍分类问题最常用的交叉熵(cross entropy)损失,并从信息论和贝叶斯两种视角阐释交叉熵损失的内涵. ## 公式请查看:https://blog.csdn.net/Ambrosedream/article/details…
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
1 softmax函数 softmax函数的定义为 $$softmax(x)=\frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1}$$ softmax函数的特点有 函数值在[0-1]的范围之内 所有$softmax(x_i)$相加的总和为1 面对一个分类问题,能将输出的$y_i$转换成[0-1]的概率,选择最大概率的$y_i$作为分类结果[1]. 这里需要提及一个有些类似的sigmoid函数,其定义为 $$sigmoid(x)=\frac{1}{1+e^{-x_i}} \…