[原创]分布式之数据库和缓存双写一致性方案解析(三)   正文 博主本来觉得,<分布式之数据库和缓存双写一致性方案解析>,一文已经十分清晰.然而这一两天,有人在微信上私聊我,觉得应该要采用 先删缓存,再更新数据库,再删缓存 这一方案作为缓存更新策略,而不是先更新数据库,再删缓存.并且搬出了两篇大佬的文章,<Cache Aside Pattern>,<缓存与数据库不一致,咋办?>,希望博主能加以说明.因为问的人太多了,所以才有了这篇文章的诞生. 正文 在开始这篇文章之前,…
前言 在一个项目中,技术的统一性是最重要的,数据库的设计则是重点中的重点.NoSQL 是目前最流行的数据库,但是其实用性和功能性远不如sql数据库. 实际很多SQL数据库被诟病的性能问题大多是源于程序员的不合理设计,一个好的设计可以使sql类数据库提高几倍的性能. 1.细节的优化 字段尽量设置为not null . 规范字段大小,越小越好. 表名规范前缀. 一个表尽量储存一个对象. char永远比varchar更高效. timestamp 比datetime小一倍. 避免字串ID. 单条查询最后…
前言 Nodejs目前处境稍显尴尬,很多语言都已经拥有异步非阻塞的能力.阿里的思路是比较合适的,但是必须要注意,绝对不能让node做太多的业务逻辑,他只适合接收生成好的数据,然后或渲染后,或直接发送到客户端. 为什么nodejs 还可以成为主流技术哪? 是因为nodejs 对于大前端来说还是非常重要的技术!!!如果你理解nodejs 的编程原理,很容易就会理解angularjs,reactjs 和vuejs 的设计原理. NodeJS Node是一个服务器端JavaScript解释器,用于方便地…
一 前言 首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者是先删除缓存,再更新数据库,其实大家存在很大的争议 本文由以下三个部分组成 1.讲解缓存更新策略 2.对每种策略进行缺点分析 3.针对缺点给出改进方案 二 一致性方案 先做一个说明,从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案.这种方案下,我们可以对存入缓存的数据设置过期时间…
前言 本来是想只做一个Nodejs运行原理-科普篇,但是收到了不少私信,要我多分享一些更进阶,更详细的内容,所以我会在接下来的两个月里继续更新Nodejs运行原理. PS:此系列只做Nodejs的运行原理(架构,libuv,v8 etc),并不介绍Nodejs功能以及使用方法. 本文以两个view来看Nodejs的架构,一个是从模块依赖的角度,另一个是从函数调用的角度. 1.模块依赖…
采用三级缓存:nginx本地缓存+redis分布式缓存+tomcat堆缓存的多级缓存架构 时效性要求非常高的数据:库存 一般来说,显示的库存,都是时效性要求会相对高一些,因为随着商品的不断的交易,库存会不断的变化 时效性要求不高的数据:商品的基本信息(名称.颜色.版本.规格参数,等等) 商品价格/库存等时效性要求高的数据,而且种类较少,采取相关的服务系统每次发生了变更的时候,直接采取数据库和redis缓存双写的方案,这样缓存的时效性最高 商品基本信息等时效性不高的数据,而且种类繁多,来自多种不同…
前言 之前做过Nodejs的架构篇, 有很多朋友留言给我,说没看懂里面的例子,这里我会重新梳理一下,再以http server为例,来解析Nodejs从前端到libuv的调用过程. 正文 回忆a. Nodejs提供了许多功能接口(又称标准库),例如:http,net,socket etc 回忆b. 这些库是由C/C++写成,并且对外提供服务 回忆c. libuv负责异步调用工作(event loop) 这是上一篇我们使用过得流程图,从V8角度出发,描述了建立http server,js 到C/C…
前言 这应该是Nodejs的运行原理的第7篇分享,这篇过后,短时间内不会再分享Nodejs的运行原理,会停更一段时间,PS:不是不更,而是会开挖新的坑,最近有在研究RPG Maker MV,区块链,云计算,可能会更新一些相关文章,或者相关教学. 回到正题,异步编程的难点在于请求与响应不是按顺序发生的.以http server 为例,异步编程赋予了server 高并发的品质,而且他可以以很小的资源代价,不断地接受和处理请求.但是快速处理请求不表示快速地返回请求=>高并发不等同于快速反馈. 在Nod…
简单的场景: 直接使用 1. 使用Cache Aside pattern 读取的时候,先读取缓存中是否有数据,缓存中没有数据,再去数据库中进行查询,查询出来以后,然后再存入到缓存中 更新的时候,先删除缓存库,然后再更新数据库. 为什么是先删除缓存,然后再更新数据库? 因为有可能存入到缓存中的是一个经过复杂运算的数值. 我更新数据库的时候,并不是每次都要将这个经过复杂运算的值取出来,所以使用一个lazy的加载思想,先删除缓存库,然后等我什么时候需要,什么时候再进行加载.   在高并发的情况下,出现…
前言 这里是重点:Nodejs 是由v8 engine,libuv和内置模块组成,可以将v8 engine和 libuv看成一个库,两者是以源码的方式直接编译执行node中去的. 这是一个广泛的介绍,后面会详细介绍Nodejs的生态圈. V8 engine V8官方文档 https://developers.google.com/v8/intro #include "include/v8.h" #include "include/libplatform/libplatform…
前言 使用Nodejs,就不可避免地引用第三方模块,它们有些是Nodejs自带的(例:http,net...),有些是发布在npm上的(例:mssql,elasticsearch...) 本篇章聚焦3个问题: 1.Nodejs模块的加载过程. 2.应用启动的过程. 3.应用如何加载依赖模块. 1.模块的加载过程 Nodejs 模块大概可分为4种: a) builtin module Nodejs中以C++形式提供的模块. b) constant module Nodejs中定义常量的模块. c)…
转载自:https://blog.csdn.net/lzhcoder/article/details/79469123 https://blog.csdn.net/u013374645/article/details/91409150 1.最经典的缓存+数据库读写的模式,cache aside pattern 1.1.Cache Aside Pattern (1)读的时候,先读缓存,缓存没有的话,那么就读数据库,然后取出数据后放入缓存,同时返回响应 (2)更新的时候,先删除缓存,然后再更新数据库…
在Python语言中,从SQL Server数据库读写数据,通常情况下,都是使用sqlalchemy 包和 pymssql 包的组合,这是因为大多数数据处理程序都需要用到DataFrame对象,它内置了从数据库中读和写数据的函数:read_sql()和to_sql(),这两个函数支持的连接类型是由sqlalchemy和pymssql构成的,因此,掌握这两个包对于查询SQL Server数据库十分必要. SQLAlchemy的架构 在Python语言环境中,当需要和关系型数据进行交互时,SQLAl…
一. 缓存雪崩 1. 含义 同一时刻,大量的缓存同时过期失效. 2. 产生原因和后果 (1). 原因:由于开发人员经验不足或失误,大量热点缓存设置了统一的过期时间. (2). 产生后果:恰逢秒杀高峰,缓存过期,瞬间海量的QPS(每秒查询次数)直接打到DB上,如果系统架构没有熔断机制,直接将导致系统全线崩溃. 3. 处理方案 (1). 设置不同的缓存失效时间,比如可以在缓存过期时间后面加个随机数,这样就避免同一时刻缓存大量过期失效. setRedis(key,value,time + Math.r…
一.双写一致性 双写一致性,也就是说 Redis 和 mysql 数据同步 双写一致性数据同步的方案有: 1.先更新数据库,再更新缓存 这个方案一般不用: 因为当有两个请求AB先后更新数据库后,A应该先更新缓存,但是因为网络原因,B却先更新了缓存,导致了脏数据,所以不考虑用. 2.先删缓存,再更新数据库 这个方案也不是很好: 缓存删了,数据库还没存完,又来了一个请求,又去数据库拿,然后缓存又有了(在存数据的时候,请求来了,缓存不是最新的) 3.先更新数据库,再删缓存 推荐用这个方案: 更新了数据…
分布式缓存是现在很多分布式应用中必不可少的组件,但是用到了分布式缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题? Cache Aside Pattern 最经典的缓存+数据库读写的模式,就是 Cache Aside Pattern.读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应.更新的时候,先更新数据库,然后再删除缓存. 为什么是删除缓存,而不是更新缓存? 原因很简单,很多时候,在复杂点的缓存场景…
对于缓存和数据库双写,其存在着数据一致性的问题.对于数据一致性要求较高的业务场景,我们通常会选择使用分布式事务(2pc.paxos等)来保证缓存与数据库之间的数据强一致性,但分布式事务的复杂性与对资源的占用问题,使得该处理方式会造成系统性能的降低.对于数据一致性要求没那么高的业务场景,选择分布式事务的处理方式就会显得不是那么必要.为此,在一般情况下,对于数据一致性要求没那么高的业务场景,会选择使用cache-aside-pattern方案来保证缓存与数据库之间,数据的最终一致性,以下文章便是介绍…
只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题? 面试题剖析 一般来说,如果允许缓存可以稍微的跟数据库偶尔有不一致的情况,也就是说如果你的系统不是严格要求 “缓存+数据库” 必须保持一致性的话,最好不要做这个方案,即:读请求和写请求串行化,串到一个内存队列里去. 串行化可以保证一定不会出现不一致的情况,但是它也会导致系统的吞吐量大幅度降低,用比正常情况下多几倍的机器去支撑线上请求. Cache Aside Pattern 最经…
如果不是严格要求“缓存和数据库”必须保证一致性的话,最好不要做这个方案:即 读请求和写请求串行化,串到一个内存队列里面去.串行化可以保证一定不会出现不一致的情况,但会导致系统吞吐量大幅度降低. 解决这个问题的最经典的模式,就是Cache Aside Pattern. Cache Aside Pattern:     (1)读的时候先读缓存,如果缓存不存在的话就读数据库,取出数据库后更新缓存:如果存在的话直接读取缓存的信息.     (2)写的时候,先更新数据库,再删除缓存. 说到这个问题,又会出…
首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作. 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者是先删除缓存,再更新数据库,其实大家存在很大的争议.目前没有一篇全面的博客,对这几种方案进行解析.于是博主战战兢兢,顶着被大家喷的风险,写了这篇文章. 文章结构 本文由以下三个部分组成 1.讲解缓存更新策略2.对每种策略进行缺点分析3.针对缺点给出改进方案 正文 先做一个说明,从理论上来说,给缓存设…
前言 当客户端向http server 发起TCP链接时,server端会发起一系列的callback调用,这是一个逆向调用的过程:开始于libuv,终止于js代码里的callback(promise then)函数. 如下图所示,http server 正向调用过程,实际大部分的时间花在net.js上,直到最下面的红框,才调用了关键函数createTCP() function createTCP() { //绑定tcp_wrap模块,调用tcp constructor. var TCP = p…
并发场景中大部分处理的是先更新DB,再(删缓.更新)缓存的处理方式,但是在实际场景中有可能DB更新成功了,但是缓存设置失败了,就造成了缓存与DB数据不一致的问题,下面就以实际情况说下怎么解决此类问题. 名词 Cache:本文内指redis,ReadRequest:请求从Cache.Db中拿去数据,WriteRequest:数据写入DB并删除缓存 若要保证数据库与缓存一直,我们需要采用先删缓存,在更新DB的情况,这时候有的同学可能会问,如果缓存删除成功了,而DB更新失败了怎么办,其实仔细考虑一下,…
单元测试单元测试(unit testing)是指对软件中的最小可测试单元进行检查和验证.对于单元测试中单元的含义,一般来说,要根据实际情况去判定其具体含义,如C语言中单元指一个函数,Java里单元指一个类,图形化的软件中可以指一个窗口或一个菜单等.总的来说,单元就是人为规定的最小的被测功能模块.单元测试框架在单元测试框架出现之前,开发人员在创建可执行测试时饱受折磨.最初的做法是在应用程序中创建一个窗口,配有"测试控制工具(harness)".它只是一个窗口,每个测试对应一个按钮.这些测…
首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作. 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者是先删除缓存,再更新数据库,其实大家存在很大的争议.目前没有一篇全面的博客,对这几种方案进行解析.于是博主战战兢兢,顶着被大家喷的风险,写了这篇文章. 文章结构 本文由以下三个部分组成 1.讲解缓存更新策略2.对每种策略进行缺点分析3.针对缺点给出改进方案 正文 先做一个说明,从理论上来说,给缓存设…
首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作. 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者是先删除缓存,再更新数据库,其实大家存在很大的争议.目前没有一篇全面的博客,对这几种方案进行解析.于是博主战战兢兢,顶着被大家喷的风险,写了这篇文章. 文章结构 本文由以下三个部分组成 1.讲解缓存更新策略2.对每种策略进行缺点分析3.针对缺点给出改进方案 正文 先做一个说明,从理论上来说,给缓存设…
首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作. 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者是先删除缓存,再更新数据库,其实大家存在很大的争议.目前没有一篇全面的博客,对这几种方案进行解析.于是博主战战兢兢,顶着被大家喷的风险,写了这篇文章. 文章结构 本文由以下三个部分组成1.讲解缓存更新策略2.对每种策略进行缺点分析3.针对缺点给出改进方案 正文 先做一个说明,从理论上来说,给缓存设置…
一:序 - 最近在对数据做缓存时候,会涉及到如何保证 数据库/Redis 一致性问题. - 刚好今天来总结下 一致性问题 产生的问题,和可能存在的解决方案. 二:(更新策略)-  先更新数据库,后更新缓存 - 产生的问题 -  - 由上面流程图可知道,请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存. - 这就导致了脏数据,因此不考虑 先更新数据库,后更新缓存 这个更新策略. 三:(更新策略)-  先删除缓存,在更新数据库 - 产生的问题 -  - 如果同时有…
一:序 - 最近在对数据做缓存时候,会涉及到如何保证 数据库/Redis 一致性问题. - 刚好今天来总结下 一致性问题 产生的问题,和可能存在的解决方案. 二:(更新策略)-  先更新数据库,后更新缓存 - 产生的问题 -  - 由上面流程图可知道,请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存. - 这就导致了脏数据,因此不考虑 先更新数据库,后更新缓存 这个更新策略. 三:(更新策略)-  先删除缓存,在更新数据库 - 产生的问题 -  - 如果同时有…
Spark SQL 表的命名方式是db_name.table_name,只有数据库名称和数据表名称.如果没有指定db_name而直接引用table_name,实际上是引用default 数据库下的表.在Spark SQL中,数据库只是指定表文件存储的路径,每个表都可以使用不同的文件格式来存储数据,从这个角度来看,可以把database看作是Databricks 表的上层目录,用于组织数据表及其文件. 在python语言环境中,可以使用 %sql 切换到SQL命令模式: %sql 一,数据库 常用…
1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O吞吐量小,形成了瓶颈效应. 3.没有创建计算列导致查询不优化. 4.内存不足 5.网络速度慢 6.查询出的数据量过大(可以采用多次查询,其他的方法降低数据量) 7.锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷) 8.sp_lock,sp_who,活动的用户查看,原因是读写竞争资源. 9.返回了不必要的行和列 10.查询语句不好,没有优化 ●可以通过如下方法来优化查询 : 1.把数据.日志.索引放到不同的…