自定义tf.keras.Model需要注意的点 model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_format="tf" NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work…
经过网上查找,找到了问题所在:在使用keras编程模式是,中间插入了tf.reshape()方法便遇到此问题. 解决办法:对于遇到相同问题的任何人,可以使用keras的Lambda层来包装张量流操作,这是我所做的: embed1 = keras.layers.Embedding(, )(inputs) # embed = keras.layers.Reshape(-,, , )(embed1) # embed = tf.reshape(embed1, [-, , , ]) def reshape…
Keras 是一个用于构建和训练深度学习模型的高阶 API.它可用于快速设计原型.高级研究和生产. keras的3个优点: 方便用户使用.模块化和可组合.易于扩展 简单点说就是,简单.好用.快(构建) 引用方法: import tensorflow as tf from tensorflow.keras import layers 简单构建一个模型 先上代码 input_x = tf.keras.Input(shape=(72,)) hidden1 = layers.Dense(32, acti…
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(shape()) 两个元素零向量 tf.zeros(shape=(2)) 2x2常量 tf.constant([1,2],[3,4]) 查看形状.类型.值 A.shape A.dtype A.numpy() 矩阵相加 tf.add(A,B) 矩阵相乘 tf.matmul(A,B) 自动求导机制  tf.G…
# 1   sklearn  一般方法 网上有很多教程,不再赘述. 注意顺序是 numpy+mkl     ,然后 scipy的环境,scipy,然后 sklearn # 2 anoconda anaconda 原始的环境已经自带了sklearn,这里说一下新建环境(比如  创建了一个tensorflow的环境),activate tensorflow2.0,然后conda install sklearn 即可,会帮你把各种需要的库都安装. # keras keras 前置需要Theano  或…
TensorFlow 2.0 版本将 keras 作为高级 API,对于 keras boy/girl 来说,这就很友好了.tf.keras 从 1.x 版本迁移到 2.0 版本,需要修改几个地方. 1. 设置随机种子 import tensorflow as tf # TF 1.x tf.set_random_seed(args.seed) # TF 2.0 tf.random.set_seed(args.seed) 2. 设置并行线程数和动态分配显存 import tensorflow as…
系列文章目录: Tensorflow2.0 介绍 Tensorflow 常见基本概念 从1.x 到2.0 的变化 Tensorflow2.0 的架构 Tensorflow2.0 的安装(CPU和GPU) Tensorflow2.0 使用 "tf.data" API "tf.keras"API 使用GPU加速 安装配置GPU环境 使用Tensorflow-GPU 3 TensorFlow2.0使用 3.2 "tf.keras"API Keras是一…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
Update:2019/09/21 使用 tf.keras 时,请使用 tf.keras.optimizers 里面的优化器,不要使用 tf.train 里面的优化器,不然学习率衰减会出现问题. 使用 tf.keras 过程中,如果要使用 learning rate decay,不要使用 tf.train.AdamOptimizer() 等 tf.train 内的优化器,因为学习率的命名不同,导致 tf.keras 中学习率衰减的函数无法使用,一般都会报错 "AttributeError: 'T…
运行以下类似代码: while True: inputs, outputs = get_AlexNet() model = tf.keras.Model(inputs=inputs, outputs=outputs) model.summary() adam_opt = tf.keras.optimizers.Adam(learning_rate) # The compile step specifies the training configuration. model.compile(opt…