首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Spark分布式执行原理
】的更多相关文章
Spark分布式执行原理
Spark分布式执行原理 让代码分布式运行是所有分布式计算框架需要解决的最基本的问题. Spark是大数据领域中相当火热的计算框架,在大数据分析领域有一统江湖的趋势,网上对于Spark源码分析的文章有很多,但是介绍Spark如何处理代码分布式执行问题的资料少之又少,这也是我撰写文本的目的. Spark运行在JVM之上,任务的执行依赖序列化及类加载机制,因此本文会重点围绕这两个主题介绍Spark对代码分布式执行的处理.本文假设读者对Spark.Java.Scala有一定的了解,代码示例基于Scal…
深度剖析Spark分布式执行原理
让代码分布式运行是所有分布式计算框架需要解决的最基本的问题. Spark是大数据领域中相当火热的计算框架,在大数据分析领域有一统江湖的趋势,网上对于Spark源码分析的文章有很多,但是介绍Spark如何处理代码分布式执行问题的资料少之又少,这也是我撰写文本的目的. Spark运行在JVM之上,任务的执行依赖序列化及类加载机制,因此本文会重点围绕这两个主题介绍Spark对代码分布式执行的处理.本文假设读者对Spark.Java.Scala有一定的了解,代码示例基于Scala,Spark源码基于2.…
Spark内部执行机制
Spark内部执行机制 1.1 内部执行流程 如下图1为分布式集群上spark应用程序的一般执行框架.主要由sparkcontext(spark上下文).cluster manager(资源管理器)和▪executor(单个节点的执行进程).其中cluster manager负责整个集群的统一资源管理.executor是应用执行的主要进程,内部含有多个task线程以及内存空间. 图1 spark分布式部署图 详细流程图如下图2: 图2 详细流程图 (1) 应用程序在使用spark-s…
Spark生态以及原理
spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍. 适用场景广泛 => 大数据分析统计,实时数据处理,图计算及机器学习 易用性 => 编写简单,支持80种以上的高级算子,支持多种语言,数据源丰富,可部署在多种集群中 容错性高.Spark引进了弹性分布式数据集RDD (Resil…
Spark Scheduler内部原理剖析
文章正文 通过文章“Spark 核心概念RDD”我们知道,Spark的核心是根据RDD来实现的,Spark Scheduler则为Spark核心实现的重要一环,其作用就是任务调度.Spark的任务调度就是如何组织任务去处理RDD中每个分区的数据,根据RDD的依赖关系构建DAG,基于DAG划分Stage,将每个Stage中的任务发到指定节点运行.基于Spark的任务调度原理,我们可以合理规划资源利用,做到尽可能用最少的资源高效地完成任务计算. 1.分布式运行框架 Spark可以部署在多种资源管理平…
Spark 以及 spark streaming 核心原理及实践
收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年,2016年入职微信广告中心. 导语 spark 已经成为广告.报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家. 本文…
Spark的RDD原理以及2.0特性的介绍
转载自:http://www.tuicool.com/articles/7VNfyif 王联辉,曾在腾讯,Intel 等公司从事大数据相关的工作.2013 年 - 2016 年先后负责腾讯 Yarn 集群和 Spark 平台的运营与研发.曾负责 Intel Hadoop 发行版的 Hive 及 HBase 版本研发.参与过百度用户行为数据仓库的建设和开发,以及淘宝数据魔方和淘宝指数的数据开发工作.给 Spark 社区贡献了 25+ 个 patch,接受的重要特性有 python on yarn-…
带你了解极具弹性的Spark架构的原理
摘要:相比MapReduce僵化的Map与Reduce分阶段计算相比,Spark的计算框架更加富有弹性和灵活性,运行性能更佳. 本文分享自华为云社区<Spark架构原理>,作者:JavaEdge. 相比MapReduce僵化的Map与Reduce分阶段计算相比,Spark的计算框架更加富有弹性和灵活性,运行性能更佳. Spark的计算阶段 MapReduce一个应用一次只运行一个map和一个reduce Spark可根据应用的复杂度,分割成更多的计算阶段(stage),组成一个有向无环图DAG…
4.Apache Spark的工作原理
Apache Spark的工作原理 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/Apache-Spark%E7%9A%84%E5%B7%A5%E4%BD…
高性能分布式执行框架——Ray
Ray是UC Berkeley AMP实验室新推出的高性能分布式执行框架,它使用了和传统分布式计算系统不一样的架构和对分布式计算的抽象方式,具有比Spark更优异的计算性能. Ray目前还处于实验室阶段,最新版本为0.2.2版本.虽然Ray自称是面向AI应用的分布式计算框架,但是它的架构具有通用的分布式计算抽象.本文对Ray进行简单的介绍,帮助大家更快地了解Ray是什么,如有描述不当的地方,欢迎不吝指正. 一.简单开始 首先来看一下最简单的Ray程序是如何编写的. # 导入ray,并初始化执行环…