项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限,部分程序出图不一一展示,详情进入项目链接即可 图机器学习(GML)&图神经网络(GNN)原理和代码实现(PGL)[前置学习系列二] 上一个项目对图相关基础知识进行了详细讲述,下面进图GML networkx :NetworkX 是一个 Python 包,用于创建.操作和研究复杂网络的结构.动力学和功…
决策树系列三—CART原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9482885.html ID3,C4.5算法缺点 ID3决策树可以有多个分支,但是不能处理特征值为连续的情况. 在ID3中,每次根据“最大信息熵增益”选取当前最佳的特征来分割数据,并按照该特征的所有取值来切分, 也就是说如果一个特征有4种取值,数据将被切分4份,一旦按某特征切分后,该特征在之后的算法执行中, 将不再起作用,所以…
决策树之系列一ID3原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9429257.html 应用实例: 你是否玩过二十个问题的游戏,游戏的规则很简单:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或错回答.问问题的人通过推断分解,逐步缩小待猜测事物的范围.决策树的工作原理与20个问题类似,用户输人一系列数据,然后给出游戏的答案.如下表 假如我告诉…
版权声明: 本文由SimonLiang所有,发布于http://www.cnblogs.com/idignew/.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 感知器 1.问题 人工神经网络(ANN)是机器学习的一重要分支,在没介绍神经网络之前,有必要先介绍感知器,感知器是人工神经网络的前身. 有这么一个问题,我们知道某人的体重及身高可否估计出人体脂肪的含量比例(就是肥瘦问题了)? 而实际的 在这之前,我们随机在街上找了几百人做测量,测量下面的数据: 1.年龄(岁…
[清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai同学对 GNN 相关的综述论文.模型与应用进行了综述,并发布在 GitHub 上.16大应用包含物理.知识图谱等最新论文整理推荐. GitHub 链接: https://github.com/thunlp/GNNPapers 目录            …
目录 Capturing Graph Structure Graph Isomorphism Network Vulnerability to Noise 转自本人:https://blog.csdn.net/New2World/article/details/106626551 这一个 Lecture 前还有一个关于 Knowledge Graph 的 slide 我打算跳过,因为 KG 我现在还没有深入研究,可能以后有空会系统地写一个系列,因此现在就不要先入为主了.后面也还有一个 slide…
AdaBoost原理与代码实现 本文系作者原创,转载请注明出处: https://www.cnblogs.com/further-further-further/p/9642899.html 基本思路 Adaboost体现的是“三个臭皮匠,胜过一个诸葛亮”,它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器), 然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).训练过程如下(参考Andy的机器学习--浅析Adaboost算法,他说得非常形象,贴切.) 简单的…
文章来自公众号[机器学习炼丹术],回复"炼丹"即可获得海量学习资料哦! 目录 1 动态图的初步推导 2 动态图的叶子节点 3. grad_fn 4 静态图 本章节缕一缕PyTorch的动态图机制与Tensorflow的静态图机制(最新版的TF也支持动态图了似乎). 1 动态图的初步推导 计算图是用来描述运算的有向无环图 计算图有两个主要元素:结点(Node)和边(Edge): 结点表示数据 ,如向量.矩阵.张量; 边表示运算 ,如加减乘除卷积等: 上图是用计算图表示: \(y=(x+w…
经过昨天2dtoolkit系列教程一的推出,感觉对新手还有有一定的启发作用,引导学习使用unity 2dToolKit插件的使用过程,今天继续系列二——动画精灵的创建,以及背景图的无限循环滚动,在群里总是看到什么技术好,什么技术不好,新手永远迷惑是学C#呢还是学java呢,是cocos2d呢还是unity呢,总想着什么比较火,其实没必要这样,让自己选择两难,每个人都有选择困难症,也不要想一口吃掉一个大饼,想贪图取巧,说不定别人跟你说什么什么技术比较火,但也就是目前,等到你一个新手学成的时候,说不…
经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http://www.cnblogs.com/denny402/tag/caffe/ 也许有人会觉得比较复杂.确实,对于一个使用惯了windows视窗操作的用户来说,各种命令就要了人命,甚至会非常抵触命令操作.没有学过python,要自己去用python编程实现可视化,也是非常头痛的事情.幸好现在有了nvidi…