1.简单滑动平均预测法就是将所有的售价加起来除以总数 665/5=133 2.加权滑动平均预测法:需要将售价分别乘以权之和,并除以权之和 1771/13≈136.23 二.某木材公司销售房架构件,其中某种配件的销售数据如下表.试计算:3 个月的简单滑动平均预测值(计算结果直接填在表中相应空格). 答:123 月滑动预测 4 月,234 月滑动预测 5 月,345 月滑动预测 6 月. 三.设某商品第 t 期实际价格为 500 元,用指数平滑法得到第 t 期预测价格为 480 元,第 t+1 期预…
1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以用来估计变量的局部均值,使得变量的更新与一段时间内的历史取值有关. 变量$v$在$t$时刻记为$v_t$,$\theta_t$为变量$v$在$t$时刻的取值,即在不使用滑动平均模型时$v_t = \theta_t$,在使用滑动平均模型后,$v_t$的更新公式如下: \begin{equation} …
转自:理解滑动平均(exponential moving average) 1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以用来估计变量的局部均值,使得变量的更新与一段时间内的历史取值有关. 变量vv在tt时刻记为 vtvt,θtθt 为变量 vv 在 tt 时刻的取值,即在不使用滑动平均模型时 vt=θtvt=θt,在使用滑动平均模型后,vtv…
[TOC] 简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行 程序源码 import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量.公司产能等的一种常用方法.移动平均法适用于即期预测.当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的.移动平均法根据预测时使用的各元素的权重不同 移动平均法是一种简单平滑预测技术,它的基本思…
[开发技巧]·Python极简实现滑动平均滤波(基于Numpy.convolve) ​ 1.滑动平均概念 滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)  把队列中的N个数据进行算术平均运算,就可获得新的滤波结果.N值的选取:流量,N=12:压力:N=4:液面,N=4~12:温度,N=1~4 优点:  对周期性干扰有良好的抑制作用,平滑度高  适用于高频振荡的系统 缺点:  …
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.ExponentialMovingAverage(decay,num_updates) 参数decay `shadow_variable = decay * shadow_variable + (1 - decay) * variable` 参数num_updates `min(decay, (1 +…
原文链接 在Tensorflow的教程里面,使用梯度下降算法训练神经网络时,都会提到一个使模型更加健壮的策略,即滑动平均模型. 基本思想 在使用梯度下降算法训练模型时,每次更新权重时,为每个权重维护一个影子变量,该影子变量随着训练的进行,会最终稳定在一个接近真实权重的值的附近.那么,在进行预测的时候,使用影子变量的值替代真实变量的值,可以得到更好的结果. 操作步骤 训练阶段:为每个可训练的权重维护影子变量,并随着迭代的进行更新: 预测阶段:使用影子变量替代真实变量值,进行预测. 滑动平均模型在梯…
模型:双层神经网络 [一层隐藏层.一层输出层]隐藏层输出用relu函数,输出层输出用softmax函数 过程: 设置参数 滑动平均的辅助函数 训练函数 x,y的占位,w1,b1,w2,b2的初始化 前向传播[y = w * x +b,w和b采用滑动平均更新] 后向传播[计算loss(包括交叉熵和正则化loss),采用GD更新参数(学习率使用指数衰减)] 迭代训练数据 代码: #参数设置 #输入.隐藏层神经元数.输出 samples = 55000 input_size = 784 output_…
孙子兵法的计是最早的SWOT分析,<孙子兵法>首先不是战法,而是不战之法.首先不是战胜之法,而是不败之法 在打仗之前,你要详细地去算. 计算的目的是什么呢?孙子说,是为了知胜,就是为了知道我到底能不能胜,有没有胜算.有胜算我就打,没有胜算我就不打.所以我说<孙子兵法>首先不是战法,而是不战之法.首先不是战胜之法,而是不败之法. --------------- 有胜算才投,没有胜算就不投.重点不是命中之法,而是计划不败之法,是有效管理风险,收益大于风险之法. ------------…