ACF/PACF,残差白噪声的检验问题】的更多相关文章

关于自相关.偏自相关: 一.自协方差和自相关系数       p阶自回归AR(p)       自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]       自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]   二.平稳时间序列自协方差与自相关系数       1.平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:            r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]       2…
自相关函数/自相关曲线ACF   AR(1)模型的ACF: 模型为: 当其满足平稳的必要条件|a1|<1时(所以说,自相关系数是在平稳条件下求得的):          y(t)和y(t-s)的方差是有限常数,y(t)和y(t-s)的协方差伽马s                   除以伽马0,可求得ACF如下:                  由于{rhoi}其在平稳条件|a1|<1下求得,所以平稳    0<a1<1则自相关系数是直接收敛到0    -1<a1<0…
R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = "partial") 方法二 library(ggfortify) autoplot(acf(gold[,2], plot = FALSE)) 方法三 bacf <- acf(gold[, 2], plot = FALSE) bacfdf <- with(bacf, data.frame…
#当前文件路径 getwd() #设置当前路径,注意转译 setwd("C://Users//Administrator//Desktop//R_test") #导入数据 data<-read.csv("data.csv") 1.平稳性检验单位根检验library(tseries)adf.test(data$gov_day)adf.test(data$med_day)adf.test(data$pub_day) P值均大于0.05,所以两者都没有通过单位根检验…
大白. (1)根据趋势定差分 plot(lostjob,type="b") 查看图像总体趋势,确定如何差分 df1 = diff(lostjob)  d=1阶差分 s4_df1=diff(df1,4)  对d=1阶差分结果进行k=4步(季节)差分 (2)根据所定差分检验平稳 adfTest(s4_df1,lag=6) 对差分结果进行平稳性检验 (3)ARIMA(p,d,q)中的pq定阶 acf(s4_df1) pacf(s4_df1) (4)建立arima模型 ans=arima(lo…
https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻数据差分的线性模型!!! ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列(Time-series Approach…
笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢   构造检验统计量进行假设检验:单位根检验adfTest()--fUnitRoots包 2.纯随机性检验.白噪声检验(Box.test(data,type,lag=n)--lag表示输出滞后n阶的白噪声检验统计量…
2017/7/2 19:24:15 自回归模型(Autoregressive Model,简称 AR 模型)是最常见的平稳时间序列模型之一.接下将介绍 AR 模型的定义.统计性质.建模过程.预测及应用. 一.AR 模型的引入 考虑如图所示的单摆系统.设 xt 为第 t 次摆动过程中的摆幅.根据物理原理,第 t 次的摆幅 xt 由前一次的摆幅 xt-1 决定,即有 xt=a1xt-1.考虑到空气振动的影响,我们往往假设 (1) 其中,随机干扰 εt ~ N(0, σ2). 设初始时刻 x0=1,现…
<时间序列分析——基于R>王燕,读书笔记 笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢   构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包 2.纯随机性检验.白噪声检验(Box.test(data,type,lag=n)…
周五福利日活动是电信为回馈老用户而做的活动,其主要回馈老用户的方式是让用户免费领取对应的优惠券,意在提升老用户的忠诚度和活跃度.今日,为保证仓库备货优惠券资源充足,特别是5元话费券等,需要对该类优惠券领取效果进行预测,从而指导备货.经研究选用ARIMA算法建立预测模型,对5元话费券进行日领取量的短期预测.数据集收集了2019年1月到2019年2月5元话费券的日领取量数据,并根据此数据做时间序列分析并建立预测模型. 1.进行数据的加载 from statsmodels.tsa.stattools…