“什么情况!?居然不是黑色背景+白色文字的命令行.对,今天要介绍的是一个拥有白嫩的用户界面的深度学习框架.” 人工智能.神经网络.深度学习,这些概念近年已经涌入每个人的生活中,我想很多人早就按捺不住想亲自试一试怎么玩了. 然额,百度一下相关教程后,本来对人工智能怀揣着美好憧憬的壮志青年开始怀疑人生了. “我该先复习哪些大学课程?” “好像必须搞个Linux的系统,还得熟练Python...好麻烦" “Tensorflow, Keras, Caffe...这些都什么玩意儿,我该选哪个下手?” “这…
不多说,直接上干货! 五.Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的.信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息.这表明信息处理不会增加信息,大部分处…
线性模型通过特征间的现行组合来表达“结果-特征集合”之间的对应关系.由于线性模型的表达能力有限,在实践中,只能通过增加“特征计算”的复杂度来优化模型.比如,在广告CTR预估应用中,除了“标题长度.描述长度.位次.广告id,cookie“等这样的简单原始特征,还有大量的组合特征(比如”位次-cookie“ 表示用户对位次的偏好).事实上,现在很多搜索引擎的广告系统用的都是Logistic Regression模型(线性),而模型团队最重要的工作之一就是“特征工程 (feature engineer…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目.” 图1:在GitHub上用Python语言机器学习的项目,图中颜色所对应的Bob, Iepy, Nilearn, 和NuPIC拥有最高的价值. 1. Scikit-learn www.github.com/scikit-learn/scik…
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使用 3.会话 4.TensorFlow实现神经网络 I. 前向传播算法 II. 神经网络参数与TensorFlow变量 III. 用TF训练神经网络 四.深层神经网络 1. 深度学习与深度神经网络 I. 线性模型的局限性 II. Activation去线性化 III. 多层网络解决异或运算 2. L…
refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224d Problem set 1作业 softmax: def softmax(x): assert len(x.shape) > 1 x -= np.max(x, axis=1, keepdims=True) x = np.exp(x) / np.sum(np.exp(x), axis=1, kee…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
内容来源:华为开发者大会2021 HMS Core 6 AI技术论坛,主题演讲<MindSpore联邦学习框架解决隐私合规下的数据孤岛问题>. 演讲嘉宾:华为MindSpore联邦学习工程师 大家都知道,人工智能的发展离不开广泛的数据支撑.数据是基础,也是关键.但行业中小规模.碎片化,亦是大规模.高质量的数据都很难获取,涉及到工程.监管和隐私合规多方面的问题.这也就导致人工智能产业面临数据孤岛挑战,比如企业获得用户数据越来越难.企业内不同部门数据难合作.同行业企业数据难以共享.跨行业数据难以发…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
论文标题:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 论文作者: Baoguang Shi, Xiang Bai and Cong Yao 论文代码的下载地址:http://mc.eistar.net/~xbai/CRNN/crnn_code.zip 论文地址:https://arxiv.org/p…
Caffe 深度学习框架上手教程   blink 15年1月   Caffe (CNN, deep learning) 介绍 Caffe -----------Convolution Architecture For Feature Embedding (Extraction) Caffe 是什么东东? CNN (Deep Learning) 工具箱 C++ 语言架构 CPU 和GPU 无缝交换 Python 和matlab的封装 但是,Decaf只是CPU 版本. 为什么要用Caffe? 运算…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…
Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281   blink 15年1月 6   Caffe448是一个清晰而高效的深度学习175框架,其作者是博士毕业于UC Berkeley的贾扬清1.3K,目前在Google62工作. Caffe28是纯粹的C++/CUDA架构,支持命令行.Python和MATLAB接口:可以在CPU和GPU123直接无缝切换: Caffe::set_mode(Caffe::GPU…
深度学习课程笔记(十六)Recursive Neural Network  2018-08-07 22:47:14 This video tutorial is adopted from: Youtube =====>>  问题是:language 到底是否是 recursive 的呢? ======>> 上述几个图,就展示了这个语法树的成长过程... ================================================== ========>&g…
深度学习课程笔记(十五)Recurrent Neural Network 2018-08-07 18:55:12 This video tutorial can be found from: Youtube  Issue: 传统方法中,当你的训练数据中,没有那么丰富的 training data,那么可能会导致部分数据的预测为 0,如上图所示.为了不让它变成 0,所以,我们给它一个非常小的 value,如:0.0001.但是这种给定的低概率的 value,是相当不准确的. 所以,我们想能否有一种…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源代码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度.基础方面的非常多,随便看看就能够,仅仅是非常多没有把细节说得清楚和明确: 能把细…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 3实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 CNN实例    //2 測试数据    Logger.getRootLogger.setLevel(Level.WARN)    valdata_p…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/267 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
自学人工智能的第一天 "TensorFlow 是谷歌 2015 年开源的主流深度学习框架,目前已得到广泛应用.本书为 TensorFlow 入门参考书,旨在帮助读者以快速.有效的方式上手 TensorFlow 和深度学习.书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的 TensorFlow 示例介绍如何使用深度学习解决实际问题.书中包含深度学习的入门知识和大量实践经验,是走进这个前沿.热门的人工智能领域的优选参考书 . “互联网+”的大潮催生了诸如“互联网+外卖”.“互联网+打车”…
第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类器,它以图片的特征向量(RGB值的矩阵,最后延展成一维矩阵x,如下)作为输入,然后预测输出结果…
Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础) 1. What does a neuron compute?(神经元节点计算什么?) [ ] A neuron computes an activation function followed by a linear function (z = Wx + b)(神经 元节点先计算激活函数,再计算线性函数(z = Wx + b)) [ ] A neuron computes a linear f…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 1.caffe分享 1.1.caffe起源 1·2.caffe介绍 1.3.caffe其他方向 2.讨论 2.1.caffe算法与结构 2.2.caffe工程与应用 2.3.模型训练与调参 2.4.caffe与DL的学习与方向 2.5.其他 3.附录 1.caffe分享 我用的ppt基本上和我们在…
引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年11月开源的机器学习及深度学习框架.  TensorFlow在2015年年底一出现就受到了极大的关注,在一个月内获得了GitHub上超过一万颗星的关注,目前在所有的机器学习.深度学习项目中排名第一,甚至在所有的Python项目中也排名第一.本文将带我们简单了解下TensorFlow,并与其他主流深度…
DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learning开发工具,实现深度神经网络(Deep Neural Network,DNN)设计.训练和可视化等任务变得简单化.DIGITS是基于浏览器的接口,因而通过实时的网络行为的可视化,可以快速设计最优的DNN.DIGITS是开源软件,可在GitHub上找到,因而开发人员可以扩展和自定义DIGITS. Gi…
Theano https://github.com/Theano/Theano 描述: Theano 是一个python库, 允许你定义, 优化并且有效地评估涉及到多维数组的数学表达式. 它与GPUs一起工作, 并且在符号微分方面表现优秀. 文档: http://deeplearning.net/software/theano/ 概述: Theano是数值计算的主力, 它支持了许多我们列表当中的其他的深度学习框架. Theano由 frederic bastien 创建, 这是蒙特利尔大学机器学…
开源脉冲神经网络深度学习框架--惊蛰(SpikingJelly) 背景 近年来神经形态计算芯片发展迅速,大量高校企业团队跟进,这样的芯片运行SNN的能效比与速度都超越了传统的通用计算设备.相应的,神经形态感知芯片也发展迅速.目前已有各种模态的感知芯片,其中如北京大学黄铁军教授团队的Vidar相机,功能上仿照视网膜中央凹,能输出脉冲信号,高速情况下实现比传统相机更清晰的采样.脉冲网络研究领域顶会文章与Nature Science刊物文章也在逐年增长(如下图).通过ANN转换SNN,SNN首次达到媲…
推荐GitHub上10 个开源深度学习框架   日前,Google 开源了 TensorFlow(GitHub),此举在深度学习领域影响巨大,因为 Google 在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且 Google 自己的 Gmail 和搜索引擎都在使用自行研发的深度学习工具. 无疑,来自 Google 军火库的 TensorFlow 必然是开源深度学习软件中的明星产品,登陆 GitHub 当天就成为最受关注的项目,当周获得评星数就轻松超过 1 万个. 对于希望在应用中整合深度学…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autograd之上的神经网络模块 除了nn外还会介绍神经网络中常用的工具,比如优化器optim.初始化init等 1.nn.Module torch的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层,也可以表示一个包含很多层的神经网络 在实际使用中,最常见的做法是继承nn.Modu…