VTA:深度学习加速器堆栈】的更多相关文章

VTA:深度学习加速器堆栈 多功能Tensor加速器(VTA)是一个开放的,通用的,可定制的深度学习加速器,具有完整的基于TVM的编译器堆栈.设计VTA来展示主流深度学习加速器的最显着和共同的特征.TVM和VTA共同构成了一个端到端的硬件-软件深度学习系统堆栈,其中包括硬件设计,驱动程序,JIT运行时runtime以及基于TVM的优化编译器堆栈. VTA具有以下主要功能: 通用的模块化开放源代码硬件. 简化的工作流程以部署到FPGA. 对原型编译的模拟器支持在常规工作站上传递. 基于Pynq的驱…
深度学习加速器堆栈Deep Learning Accelerator Stack 通用张量加速器(VTA)是一种开放的.通用的.可定制的深度学习加速器,具有完整的基于TVM的编译器堆栈.设计了VTA来揭示主流深度学习加速器最显著和最常见的特征.TVM和VTA一起构成了一个端到端的软硬件深度学习系统堆栈,包括硬件设计.驱动程序.JIT运行时和基于TVM的优化编译器堆栈. VTA具有以下主要功能: 通用.模块化.开源硬件. 简化了部署到FPGA的工作流程. 模拟器支持原型编译通过常规工作站. 基于P…
推断(Inference),就是深度学习把从训练中学习到的能力应用到工作中去. 精心调整权值之后的神经网络基本上就是个笨重.巨大的数据库.为了充分利用训练的结果,完成现实社会的任务,我们需要的是一个能够保留学习到的能力,还能迅速应用到前所未见的数据上的,响应迅速的系统.这就是推断,根据真实世界中的少量数据,迅速地提供正确的答案. 这可是计算机科学的全新领域.现在主要有两种方法来优化庞大笨拙的神经网络,以实现高速低延迟的应用. 第一个方法,是查找神经网络中经过训练后并没有用到.也就是说尚未激活的部…
用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈 深度学习已变得无处不在,不可或缺.这场革命的一部分是由可扩展的深度学习系统推动的,如滕索弗洛.MXNet.咖啡和皮托奇.大多数现有系统针对范围狭窄的服务器级 GPU 进行了优化,需要在其它平台,如移动电话.物联网设备和专用加速器(FPGA.ASIC)上部署大量精力.随着深度学习框架和硬件后端数量的增加,建议建立一个统一的中间表示 (IR) 堆栈,以缩小以生产力为中心的深度学习框架与面向性能或效率的硬件后端之间的差距. TVM 是一个新…
前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN).今天讨论另一种与它们类似的策略:Weight Normalization(Weight Normalization).Weight Normalization是Batch Normalization的一种变体,与Batch Normalization最大不同点:对神经网络的权值向量W进行参数重写Re…
在本章中,将会学到: l  如何使用Kelp.Net来执行自己的测试 l  如何编写测试 l  如何对函数进行基准测试 Kelp.Net是一个用c#编写的深度学习库.由于能够将函数链到函数堆栈中,它在一个非常灵活和直观的平台中提供了惊人的功能.它还充分利用OpenCL语言平台,在支持cpu和gpu的设备上实现无缝操作.深度学习是一个非常强大的工具,对Caffe和Chainer模型加载的本机支持使这个平台更加强大.您将看到,只需几行代码就可以创建一个100万个隐藏层的深度学习网络. Kelp.Ne…
Kelp.Net是一个用c#编写的深度学习库 基于C#的机器学习--c# .NET中直观的深度学习   在本章中,将会学到: l  如何使用Kelp.Net来执行自己的测试 l  如何编写测试 l  如何对函数进行基准测试 Kelp.Net是一个用c#编写的深度学习库.由于能够将函数链到函数堆栈中,它在一个非常灵活和直观的平台中提供了惊人的功能.它还充分利用OpenCL语言平台,在支持cpu和gpu的设备上实现无缝操作.深度学习是一个非常强大的工具,对Caffe和Chainer模型加载的本机支持…
TVM:一个端到端的用于开发深度学习负载以适应多种硬件平台的IR栈  本文对TVM的论文进行了翻译整理 深度学习如今无处不在且必不可少.这次创新部分得益于可扩展的深度学习系统,比如 TensorFlow.MXNet.Caffe 和 PyTorch.大多数现有系统针对窄范围的服务器级 GPU 进行了优化,并且需要在其他平台(如手机.IoT 设备和专用加速器(FPGA. ASIC))上部署大量工作.随着深度学习框架和硬件后端数量不断增加,我们提出了一个统一的中间表征(IR)堆栈,可以弥补以生产力为中…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chenxiaoqing.范娜Fiona.杨超.微胖.汪汪.赵巍 导读:这是<神经网络和深度学习简史>第一部分.这一部分,我们会介绍1958年感知机神经网络的诞生,70年代人工智能寒冬以及1986年BP算法让神经网络再度流行起来. 深度学习掀起海啸 如今,深度学习浪潮拍打计算机语言的海岸已有好几年,但是,…