<?php $f = 0.58; var_dump(intval($f * 100)); //为啥输出57 ?> 首先我们要知道浮点数的表示(IEEE 754): 浮点数, 以64位的长度(双精度)为例, 会采用1位符号位(E), 11指数位(Q), 52位尾数(M)表示(一共64位). 符号位:最高位表示数据的正负,0表示正数,1表示负数. 指数位:表示数据以2为底的幂,指数采用偏移码表示 尾数:表示数据小数点后的有效数字. 这里的关键点就在于, 小数在二进制的表示, 关于小数如何用二进制表…
一.js只允许输入数字和两位小数 //只允许输入数字和两位小数 function clearNoNum(obj) { obj.value = obj.value.replace(/[^\d.]/g, ""); //清除“数字”和“.”以外的字符 obj.value = obj.value.replace(/\.{2,}/g, "."); //只保留第一个. 清除多余的 obj.value = obj.value.replace(".", &quo…
sql 除法运算 保留两位小数 SELECT 1530/60 select cast(1530*1./60 as decimal(18,1))…
小数相乘出现很多位小数的问题:这个问题自己以前也遇到过,现在特意来总结一下: Number类型: Number类型是ECMAScript中最常用和最令人关注的类型了:这种类型使用IEEE754格式来表示整数和浮点数值(浮点数值在某些语言中也被成为双精度数值),为支持各种数据类型,ECMA-262定义了不同的数值面量格式. 十进制: var intNum=10; //整数 八进制: var octalNum1=070; //八进制的56 var octalNum2=079; //无效的八进制数值-…
js中toFixed(n) 方法可把 数字四舍五入为指定小数位数n的数字,注意:这个方法只能对数据类型为Number的数据起作用,包括float,int等.例如:   123.12345.toFixed(2);   "123.12"             对数据进行千分位划分采用这样的一个语句就行了:.replace(/\d{1,3}(?=(\d{3})+(\.\d*)?$)/g, '$&,').注意:replace()方法只能对字符串类型起作用,而我们队数据进行千分位划分的…
转自https://blog.csdn.net/qiji2011/article/details/81270552 1.js: //保留2位小数,如:2,会在2后面补上00.即2.00 function toDecimal2(x) {    var f = parseFloat(x);    if (isNaN(f)) {        return false;    }    var f = Math.round(x * 100) / 100;    var s = f.toString()…
浮点数产生的原因 浮点数转二进制,会出现无限循环数,计算机又对无限循环小数进行舍入处理 js弱语言的解决方案 方法一: 指定要保留的小数位数(0.1+0.2).toFixed(1) = 0.3;这个方法toFixed是进行四舍五入的也不是很精准,对于计算金额这种严谨的问题,不推荐使用,而且不通浏览器对toFixed的计算结果也存在差异. 方法二:(推荐) 把需要计算的数字升级(乘以10的n次幂)成计算机能够精确识别的整数,等计算完毕再降级(除以10的n次幂),这是大部分编程语言处理精度差异的通用…
js,java浮点数运算错误及应对方法 一,浮点数为什么会有运算错误 IEEE 754 标准规定了计算机程序设计环境中的二进制和十进制的浮点数自述的交换.算术格式以及方法. 现有存储介质都是2进制.2进制的进制基数是2,那么一个数字只要被因素包含大于2的质数的数除,都会产生无限循环小数.无限循环小数和无理数都无法,和非无限循环的有理数一起用同一种方式存储到存储介质上的同时还保持计算的兼容性. 对于无限循环小数,可以设计一种格式存储到介质上,但是同时又要和非无限循环的有理数能够计算,效率应该会变得…
首先写一个demo 重现问题,我使用的是一个js在线测试环境[打开] 改写displaynum()函数 function displaynum(){var num = 22.77;alert(num + 10);} 点击Show按钮 结果显示32.769999999996 出现了N多小数. 也并不是所有数字都会出现这种现象, 除了 22.99  2.777 , 好像这几个数字也没什么特殊. 查了一些资料, 一是JS浮点数计算的bug, 另一个是和计算机最终转换成二进制计算有关系, 但是为什么不是…
复现与概述 当JS在进行浮点数运算时可能产生丢失精度的情况: 从肉眼可见的程度上观察,发生精度丢失的浮点数是没有规律的,但该浮点数丢失精度的问题会100%复现.经查阅,这个问题要追溯至浮点数的二进制存储方式,然而就高数而言,无限接近1的0.999999-和1是等价的,1 / ∞ ≈ 0 同理,在二进制中也同样存在这一情况. 找到原因 现在寻找浮点数的精度丢失问题跟二进制存储到底存在什么联系. JavaScript引擎 - v8核心代码中,对于小数存储位双精度浮点,即64位保存的,但是这64位又分…