numpy - 数组索引】的更多相关文章

numpy 数组索引 一.单个元素索引 一维数组索引 >>> x = np.arange(10) >>> x[2] 2 >>> x[-2] 8 二维数组索引 >>> x.shape = (2,5) # now x is 2-dimensional >>> x[1,3] 8 >>> x[1,-1] 9 数组切片 >>> x = np.arange(10) >>> x…
numpy的数组操作方便,可以用:来切片,用布尔数组或者布尔表达式来查找符合条件的数据,也可以用数组作为另一个数组的索引来查找指定的数据.但有时也会见到数组索引为-1和None.两者的用法如下: 1.-1指定维度上的最后一个.例如shape为(3,3)的数组data,data[2,-1]等同于data[2,2]:data[-1]相当于data[2]:data[1,1:-1]等同于data[1,1:2] 2.None并不指代数组中的某一维,None用于改变数组的维度.例如data的shape为(3…
在numpy中,数组除了可以被整数索引,还可以被数组索引. a[b]就是已数组b的元素为索引,读取数组a的值. 当被索引数组a是一维数组,b是一维或则多维数组时,结果维度维度与索引数组b相同. a = np.array([7,8,9,10]) b=np.array([[3,1],[1,2]]) print('a:',a) print('b:',b) print('result:',a[b]) print(a[b].shape) a: [ 7 8 9 10] b: [[3 1] [1 2]] re…
在Numpy中建立了数组或者矩阵后,需要访问数组里的成员,改变元素,并对数组进行切分和计算. 索引和切片 Numpy数组的访问模式和python中的list相似,在多维的数组中使用, 进行区分: 在python的list 下: a = [1,2,4] print a[2:] 打印出: [4] 这是一个数组,在Numpy的多维数组中也采用相同的模式进行数组的访问: import numpy as np a = np.arange(1,37) a = a.reshape(6,6) print a 打…
前几篇博文我写了数组创建和数据运算,现在我们就来看一下数组对象的操作方法.使用索引和切片的方法选择元素,还有如何数组的迭代方法. 一.索引机制 1.一维数组 In [1]: a = np.arange(10,16) In [2]: a Out[2]: array([10, 11, 12, 13, 14, 15]) #使用正数作为索引 In [3]: a[3] Out[3]: 13 #还可以使用负数作为索引 In [4]: a[-4] Out[4]: 12 #方括号中传入多数索引值,可同时选择多个…
numpy array 过滤后的数组,索引值从 0 开始. pandas Series 过滤后的 Series ,保持原来的索引,原来索引是几,就是几. 什么意思呢,来看个栗子: import numpy as np import pandas as pd # 有两个相同的数组,一个是pd Series 一个是 np array a = pd.Series([1, 2, 3, 4]) c = np.array([1, 2, 3, 4]) # 通过索引数组来过滤数组 d = a[a>3] e =…
numpy数组的索引和切片 基本切片操作 >>> import numpy as np >>> arr=np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> arr[5] 5 >>> arr[5:8] array([5, 6, 7]) 切片赋值操作 1.切片赋一个值对应原来数组中的值也会变 >>> arr[5:8]=12 &g…
一:数组的属性 每个数组都有它的属性,可分为:ndim(数组的维度),shape(数组每个维度的大小),size(数组的总大小),dtype(数组数据的类型) 二:数组索引 和python列表一样,Numpy的索引在一维数组中,也可以通过中括号重指定索引获取第i个值(从0开始) 如: x1 = [1,2,3,4,5,6,7,8] print(x1[0]) out: 1 比较有用的一个是,numpy支持负值索引,如print(x1[-1]) out:8 负值索引的时候是从-1开始的,-1表示倒数第…
可以来我的Github看原文,欢迎交流. https://github.com/AsuraDong/Blog/blob/master/Articles/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/numpy%E6%95%B0%E7%BB%84%E3%80%81%E5%90%91%E9%87%8F%E3%80%81%E7%9F%A9%E9%98%B5%E8%BF%90%E7%AE%97.md import numpy as np import pandas as pd…
操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, 13, 14]),) x[indices] # this indexing is equivalent to the fancy indexing x[mask] => array([ 5.5, 6. , 6.5, 7. ]) diag 使用 diag 函数能够提取出数组的对角线: diag(A) =…