NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32     雷锋网 AI 科技评论按,不久前,NeurIPS 2018 在加拿大蒙特利尔召开,在这次著名会议上获得最佳论文奖之一的论文是<Neural Ordinary Differential Equations>,论文地址:https://arxiv.org/abs/1806.07366.Branislav Holländer 在 towards…
Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. Before: a discrete sequence of hidden layers. After: the derivative of the hidden state. Traditional methods: resid…
(Newton 1671, “Problema II, Solutio particulare”). Solve the total differential equation $$3x^2-2ax+ay-3y^2y'+axy'=0.$$Solve:We have $$y'(3y^2-ax)=3x^2-2ax+ay.$$So$$dy(3y^2-ax)=(3x^2-2ax+ay)dx.$$So $$y^{3}-axy=x^3-ax^2+axy+C$$where $c$ is a constant.…
Solve equation $y'=1-3x+y+x^2+xy$ with another initial value $y(0)=1$. Solve: We solve this by using Newton's extraordinary method.We assume that the solution is analytic,which means it can be expanded in Taylor series.$y(0)=1$ means that $$ y'(0)=2…
和 Nested Partition 有相通之处? 伯克利提出 AdaSearch:一种用于自适应搜索的逐步消除方法 在机器学习领域的诸多任务当中,我们通常希望能够立足预先给定的固定数据集找出问题的答案.然而,在某些应用场景下我们并没有先验数据可供参考 ; 相反,我们必须自行收集数据以回答那些自己感兴趣的问题.举例来说,这种情况在环境污染物监测以及人口普查类调查中就比较常见.自行收集数据的方式,使得我们能够将注意力集中在相关度最高的信息来源身上.然而,确定哪些信息来源能够生成有用的指标同样不是件…
文章转自微信公众号:[机器学习炼丹术] 参考目录: 目录 0 概述 1 主要内容 1.1 Non local的优势 1.2 pytorch复现 1.3 代码解读 1.4 论文解读 2 总结 论文名称:"Non-local Neural Networks" 论文地址:https://arxiv.org/abs/1711.07971 0 概述 首先,这个论文中的模块,叫做non-local block,然后这个思想是基于NLP中的self-attention自注意力机制的.所以在提到CV中…
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 本文工作: 1)正式区分了 K-hop 邻居的两个不同的内核,它们在以前的工作中经常被滥用.一种是基于图扩散(…
点云配准的端到端深度神经网络:ICCV2019论文解读 DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Lu_DeepVCP_An_End-to-End_Deep_Neural_Network_for_Point_Cloud_Registration_ICCV_2019_paper.…
8 月 19 日至 23 日,数据挖掘顶会 KDD 2018 在英国伦敦举行,昨日大会公布了最佳论文等奖项.最佳论文来自慕尼黑工业大学的研究者,他们提出了针对图深度学习模型的对抗攻击方法,是首个在属性图上的对抗攻击研究.研究者还提出了一种利用增量计算的高效算法 Nettack.此外,实验证明该攻击方法是可以迁移的. 图数据是很多高影响力应用的核心,比如社交和评级网络分析(Facebook.Amazon).基因相互作用网络(BioGRID),以及互连文档集合(PubMed.Arxiv).基于图数据…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 后面陆续写一些关于神经网络加速芯片设计的paper,前面已经写了ISSCC2017,当然,因为只有利用不加班的下班时间来看和写,可能周期会比较长-不过呢,多学习一些总是好的.最近有点忙,没有保持写的节奏,后面加油吧!).下一篇会开始写ISCA 2017的论文. 作者与单位: 国内知名的深鉴科技的几位初创写的一篇,拿了今年FPG…