题目连接: 传送 题解: 真是一道好题…… 一: 一个分数$\frac{x}{y}$完全循环当其第一次出现时,当且仅当y与k互质,x与y互质,且y不等于1. 整数情况下y一定为1,即也满足以上判断. 推导: 方法一:打表找规律= = 方法二:x与y互质去重= =,设循环次数为l,则对于循环节第一次循环前剩余$x\mod y$,第二次循环前剩余$xk^l\mod y$,若其为循环则满足:,由x与y互质可知存在x对y的逆元,所以: 由贝祖定理可知,k与y互质. 二.反演: 考虑d前面时间复杂度为$O…