×下面资源个人全都跑了一遍,不会出现仅是字符而无法运行的状况,运行环境: Geoffrey Hinton在多次访谈中讲到深度学习研究人员不要仅仅只停留在理论上,要多编程.个人在学习中也体会到单单的看理论到头来还是一头雾水,只有不断和编程结合,才能检验自己是否掌握了这门知识.但是作为初学者应先以跑通理论为第一要义,所以可以使用有关框架,降低入门难度,避免重复造轮子. 一.TensorFlow 资源地址: 资源介绍: 资源目录: 二.PyTorch 资源地址: 资源介绍: 这个资源为深度学习研究人员…
Tensorflow 1.4中,Keras作为作为核心模块可以直接通过tf.keas进行调用,但是考虑到keras对tfrecords文件进行操作比较麻烦,而将keras模型转成tensorflow中的另一个高级API -- Estimator模型,然后就可以调用Dataset API进行对tfrecords进行操作用来训练/评估模型.而keras本身也用到了Estimator API并且提供了tf.keras.estimator.model_to_estimator函数将keras模型可以很方…
Tensorflow.Pytorch.Keras的多GPU的并行操作 方法一 :使用深度学习工具提供的 API指定 1.1 Tesorflow tensroflow指定GPU的多卡并行的时候,也是可以先将声明的变量放入GPU中(PS:这点我还是不太明白,为什么其他的框架没有这样做) with tf.device("/gpu:%d"%i): with tf.device("cpu:0") 在创建Session的时候,通过指定session的参数,便可以指定GPU的数量…
[TensorFlow] ——( https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/) 1.TensorFlow是啥? ——TensorFlow是Google开发的一款神经网络的Python外部的结构包,也是一个采用数据流图来进行数值计算的开源软件库.TensorFlow 让我们可以先绘制计算结构图, 也可以称是一系列可人机交互的计算操作, 然后把编辑好的Python文件 转换成 更高效的C++,并在后端进行计算…
记录,自用 1.安装Anaconda(这里安装的是python3.6版本) 2.创建tensorflow的conda环境 conda create -n tensorflow python=3.6 3.切换到上一步创建的名为“tensorflow”的python解释器环境 activate tensorflow 4.分别安装tensorflow和keras 版本兼容性参考:https://docs.floydhub.com/guides/environments/ 这里选择TensorFlow…
TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphDef 完整转换器参考 计算节点兼容性 Graph 可视化工具 3 在移动端app,使用TensorFlow Lite模型推理 android IOS Raspberry PI 使用一个TensorFlow Lite 模型在你的移动端app需要受到需要约束:首先,你必须有训练好的模型(预训练/自己训练…
https://www.wandouip.com/t5i183316/ 引言 原来引用过一个段子,这里还要再引用一次.是关于苹果的.大意是,苹果发布了新的开发语言Swift,有非常多优秀的特征,于是很多时髦的程序员入坑学习.不料,经过一段头脑体操一般的勤学苦练,发现使用Swift做开发,不仅要学习Swift,还要学习Swift2.Swift3.Swift4...后来我发现,这个段子很有普遍性,并非仅仅苹果如此,今天的TensorFlow 2.0也有点这样的趋势.以至于我不得不专门写一个课程的续集…
本文地址:https://www.cnblogs.com/tujia/p/13862339.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模…
承接移动端目标识别(2) 使用TensorFlow Lite在移动设备上运行         在本节中,我们将向您展示如何使用TensorFlow Lite获得更小的模型,并允许您利用针对移动设备优化的操作. TensorFlow Lite是TensorFlow针对移动和嵌入式设备的轻量级解决方案.它支持端上的机器学习推理,具有低延迟和小二进制模型大小. TensorFlow Lite使用了许多技术,例如允许更小和更快(定点数学)模型的量化内核. 对于本节,您需要从源代码构建TensorFlow…
平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多,所以也就从tensorflow上下手了. 下面内容主要参考&翻译: https://www.tensorflow.org/mobile/?hl=zh-cn https://github.com/tensorflow/models/blob/master/research/object_detect…