Surrogate loss function,中文可以译为代理损失函数.当原本的loss function不便计算的时候,我们就会考虑使用surrogate loss function. 在二元分类问题中,假如我们有\(n\)个训练样本\(\{(X_1,y_1),(X_2,y_2),\cdots,(X_n,y_n)\}\),其中\(y_i\in\{0,1\}\).为了量化一个模型的好坏,我们通常使用一些损失函数,损失函数越小,模型越好.最常用的损失函数就是零一损失函数\(l(\hat y,y)…
1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去改进从而使下次得到的model更加令人满意呢? ”偏差-方差分解(bias-variance decomposition)“是解释学习算法泛化能力性能的一种重要工具.偏差-方差分解试图对学习算法的期望泛化错误率进行拆解. 假设测试样本为x,yd 为 x 在数据集中的标记(注意,有可能出现噪声使得 y…
Foundations of Machine Learning: Rademacher complexity and VC-Dimension(2) (一) 增长函数(Growth function) 在引入增长函数之前,我们先介绍一个例子,这个例子会有助于理解增长函数这个东西. 在input space为$\mathbb{R}$,假设空间为阈值函数,即当输入的点$x>v$时,将该点标为正.如 图1 为其中的6个假设. 图1 阈值函数示例 很显然,这个假设集合的大小为无限多个.但实际,我们很容易…
Visual Studio Code (简称 VS Code)是由微软研发的一款免费.开源的跨平台文本(代码)编辑器,在十多年的编程经历中,我使用过非常多的的代码编辑器(包括 IDE),例如 FrontPage.Dreamweaver.EditPlus.EmEditor.Notepad++.VIM.Sublime Text.Xcode 等等.它们都是很优秀的编辑器,尤其是 Sublime Text ,十分适合 web 开发. VS code有着 软件设计理念和它背后的团队,从软件架构.资金资源和…
ProxyHandler处理器(代理设置) 使用代理IP,这是爬虫/反爬虫的第二大招,通常也是最好用的. 很多网站会检测某一段时间某个IP的访问次数(通过流量统计,系统日志等),如果访问次数多的不像正常人,它会禁止这个IP的访问. 所以我们可以设置一些代理服务器,每隔一段时间换一个代理,就算IP被禁止,依然可以换个IP继续爬取. urllib2中通过ProxyHandler来设置使用代理服务器,下面代码说明如何使用自定义opener来使用代理: 自定义opener来使用代理: #urllib2_…
http://blog.csdn.net/pipisorry/article/details/52108040 范数规则化 机器学习中出现的非常频繁的问题有:过拟合与规则化.先简单的来理解下常用的L0.L1.L2和核范数规则化,最后聊下规则化项参数的选择问题. 如何看待规则化项和过拟合 从不同角度来看待规则化 regularize这个词更多的意思是"使系统化","使体系化",也就是说不要走极端,要建立和谐社会,科学发展观. 1 监督机器学习问题无非就是"m…
NLP十大里程碑 2.1 里程碑一:1985复杂特征集 复杂特征集(complex feature set)又叫做多重属性(multiple features)描写.语言学里,这种描写方法最早出现在语音学中.美国计算语言学家Martin Kay于1985年在“功能合一语法”(FunctionalUnification Grammar,简称FUG)新语法理论中,提出“复杂特征集”(complex feature set)概念.后来被Chomsky学派采用来扩展PSG的描写能力. 图1 美国计算语言…
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,特别是对我们工程师而言…
本文由云+社区发表 作者:WeTest小编 WeTest 导读 本文主要介绍如何让AI在24分钟内学会玩飞车类游戏.我们使用Distributed PPO训练AI,在短时间内可以取得不错的训练效果. 本方法的特点: 纯游戏图像作为输入 不使用游戏内部接口 可靠的强化学习方法 简单易行的并行训练 1. PPO简介 PPO(Proximal Policy Optimization)是OpenAI在2016年NIPS上提出的一个基于Actor-Critic框架的强化学习方法.该方法主要的创新点是在更新…
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC…