Wan2.1 t2v模型Lora Fine-Tune】的更多相关文章

之前的教程我们说了如何使用caffe训练自己的模型,下面我们来说一下如何fine tune. 所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中. fine tune的好处在于不用完全重新训练模型,从而提高效率,因为一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine tune能够让我们在比较少的迭代次数之后得到一个比较好的效果.在数据量不是很大的情况下,fin…
复制预训练model的参数,只需要重新copy一个train_val.prototxt.然后把不需要复制的层的名字改一下,如(fc7 -> fc7_new),然后fine tune即可. freeze指定层参数,只需要把对应层的学习率lr_mult 设置为0即可,如: 在layer里面加上param { lr_mult: 0 }就可以了,比如全连接层里面:layer { type: "InnerProduct" param { # 对应第1个参数blob的配置,也就是全连接层的参…
Fine Tune顾名思义,就是微调.在机器学习中,一般用在迁移学习中,通过控制一些layer调节一些layer来达到迁移学习的目的.这样可以利用已有的参数,稍微变化一些,以适应新的学习任务.所以说,微调不能适应变化太大的任务迁移. https://blog.csdn.net/u013841196/article/details/80919857…
resnet185352 链接:https://pan.baidu.com/s/1EZs9XVUjUf1MzaKYbJlcSA 提取码:axd1 9.2 微调 在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型.我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体.然而,我们平常接触到数据集的规模通常在这两者之间. 假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户.一种可…
所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中. fine tune的好处在于不用完全重新训练模型,从而提高效率,因为一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine tune能够让我们在比较少的迭代次数之后得到一个比较好的效果.在数据量不是很大的情况下,fine tune会是一个比较好的选择.但是如果你希望定义自己的网络结构的话,就需要从头开始了.(其…
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说…
转自Caffe fine-tuning 微调网络 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我们可能只能拿到几千张或者几万张某一特定领域的图像,比如识别衣服啊.标志啊.生物种类等等.在这种情况下重新训练一个新的网络是比较复杂的,而且参数不好调整,数据量也不够,因此fine-tuning微调就是一个比较理想的选择. 所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模…
转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object Detection进展缓慢,在DPM之后没有大的进展,直到CVPR2014,RBG大神(Ross Girshick)把当时爆火的CNN结合到Detection中,将PASCAL VOC上的准确率提高到53.7%,本文为你解读RBG的CVPR2014 paper: Rich feature hierar…
val是validation的简称.training dataset 和 validation dataset都是在训练的时候起作用.而因为validation的数据集和training没有交集,所以这部分数据对最终训练出的模型没有贡献.validation的主要作用是来验证是否过拟合.以及用来调节训练参数等. 比如你训练0-10000次迭代过程中,train和validation的loss都是不断降低,但是从10000-20000过程中train loss不断降低, validation的lo…
caffe finetune两种修改网络结构prototxt方法 第一种方法:将原来的prototxt中所有的fc8改为fc8-re.(若希望修改层的学习速度比其他层更快一点,可以将lr_mult改为原来的10倍或者其他倍数) 第二种方法:只修改name,如下例子所示: layer { name: "fc8-re" #原来为"fc8" type: "InnerProduct" bottom: "fc7" top: "…