题意: 有 n 群怨灵排成一排,燐每秒钟会选择一段区间,消灭至多 k 只怨灵. 如果怨灵数量不足 k,则会消灭尽量多的怨灵. 燐作为一只有特点的猫,它选择的区间是不会相互包含的.它想要知道它每秒最多能消灭多少怨灵. 要求:在之前每次都消灭尽量多的怨灵的情况下,求第 i 秒最多能消灭的怨灵的数量. 首先,这题可以用网络流做部分分. 考虑如何判断是否可行: 有一种显然的二分图匹配:把每个询问放在X部,怨灵放在Y部. 然后,把询问,怨灵分别拆点,进行区间连边,做匹配,如果有完美匹配,则可行. 但是,如…
题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配.两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当且仅当它们的和不小于 h. 题解:先把b排序,要想能匹配,由hall定理,b的每个子集(大小为x)都至少有x条连向b,bi递增,和bi连的边也递增,那么当bi连边大于等于i时即可,所以当min(bi-i)>=0时满足条件 线性扫一遍即可,每个a二分b更新线段树即可 //#pragma GCC opt…
[BZOJ2138]stone Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆包含Ai颗石子.每1分钟,Nan会在编号在[Li,Ri]之间的石堆中挑出任意Ki颗扔向大海(好疼的玩法),如果[Li,Ri]剩下石子不够Ki颗,则取尽量地多.为了保留扔石子的新鲜感,Nan保证任意两个区间[Li,Ri]和[Lj,Rj],不会存在Li<=Lj&Rj<=Ri的情况,即任意两段区间不存在包含关系.可是,如果选择不…
---题面--- 题目大意: 有n个人,m个座位,每个人可以匹配的座位是[1, li] || [ri, m],可能有人不需要匹配座位(默认满足),问最少有多少人不能被满足. 题解: 首先可以看出这是一个二分图匹配,根据hall定理,我们只需要求出max(人的子集大小 -  被选出的人可以选的座位集合大小). 但是枚举人的复杂度太高,所以考虑枚举座位集合,因为每个人的可选区间都是一段前缀or后缀,因此要表达一个合法的座位集合,我们只需要所有人中最右边的li和最左边的ri即可. 如图所示: 因此这个…
题意 题目链接 Sol 好的又是神仙题... 我的思路:对于区间分两种情况讨论,一种是完全包含,另一种是部分包含.第一种情况非常好判断,至于计算对于一个区间[l, r]的$\sum a[i]$就可以了,但是后两种呢?qwq.想了半天也没想出来.看了下题解,果然还有更高端的操作! 首先这题可以看是二分图匹配,最暴力的写法是对于每个a[i],直接拆成a[i]个点,然后分别向$[l_i, r_i]$连边,最后看是否能完全匹配. 有一个专门判断这玩意儿的定理: Hall定理:二部图G中的两部分顶点组成的…
题目链接 先考虑链.题目相当于求是否存在完备匹配.那么由Hall定理,对于任意一个区间[L,R],都要满足[li,ri]完全在[L,R]中的ai之和sum小于等于总位置数,即R-L+1.(其实用不到Hall定理,显然) 为什么不是子集呢,因为区间并和子集等价,所有区间并都是要验证的. 而且可以发现,只有当R为某个r[i],L为某个l[j]时,[L,R]才有必要验证. 所以我们将区间按r[]排序,枚举每个r[i]作为R.限制条件为\(sum<=R-L+1\)即\(sum+L-1<=R\),对于前…
题目链接 首先Bi之间的大小关系没用,先对它排序,假设从小到大排 那么每个Ai所能匹配的Bi就是一个B[]的后缀 把一个B[]后缀的匹配看做一条边的覆盖,设Xi为Bi被覆盖的次数 容易想到 对于每个i∈[1,m]都要满足 Xi-i >= 0,即min{Xi-i}>=0 (Hall定理) 用线段树维护即可 感觉不需要霍尔定理也能看出来(因为就是显然吧..) //583ms 4140KiB #include <cstdio> #include <cctype> #inclu…
做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得到完备匹配,注意到右边的这个dk是一个常数,那么我们就可以只考虑左边最大的是否满足就行了. 那么我们就可以在修改过程中一边在线段树上修改一边查询区间最大值作比较就可以了. #include <bits/stdc++.h> using namespace std; ; typedef long lo…
题面传送门 首先 \(b_i\) 的顺序肯定不会影响匹配,故我们可以直接将 \(b\) 数组从小到大排个序. 我们考虑分析一下什么样的长度为 \(m\) 的数组 \(a_1,a_2,\dots,a_m\) 能和 \(b\) 数组形成匹配.考虑对于 \(i,j\in [1,m]\),若 \(a_i+b_j\geq h\),就在 \(i,j\) 之间连边,那么形成的图必然是一张二分图,我们只需检验这张二分图是否存在完美匹配即可. 这时候就要用到一个叫做 Hall 定理的科技了.Hall 定理说的是这…
虽然是裸的换根dp,但是为了在联赛前锻炼码力,强行上了点分树+线段树. 写完+调完总共花了不到 $50$ 分钟,感觉还行. code: #include <bits/stdc++.h> #define N 420004 #define LL long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; namespace IO { char *p1,*p2,buf[10…
2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 H - A Simple Problem with Integers (线段树,循环节) 链接:https://ac.nowcoder.com/acm/contest/163/H 来源:牛客网 链接:https://ac.nowcoder.com/acm/contest/163/H来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %ll…
题目链接: 咕 闲扯: 终于在集训中敲出正解(虽然与正解不完全相同),开心QAQ 首先比较巧,这题是\(Ebola\)出的一场模拟赛的一道题的树上强化版,当时还口胡出了那题的题解 然而考场上只得了86最后一个substask被卡了,一开始以为毒瘤出题人卡常(虽然真卡了)卡线段树,题目时限1.5s,评测机上两个点擦线1500ms左右,剩下两个点不知道.然后本地测一下都是1900+ms!机子性能已经这样了吗....结果把快读换成\(fread\),TM过了!最慢的1200+ms!!!这......无…
题目链接 题意 : 给出一个 n 个元素的环.可以任意选择起点.选完起点后.可以行走 m 步.每次前进 k 个单位.所走到的点将产生正或负贡献.问你一开始得准备多少才能使得初始资金加上在环上获取最大利益不少于给定的 s 分析 : 对于一个环.固定步数下是有循环节的 不同循环节内的节点各不相同 根据裴蜀定理可得每个循环节的长度为 n / gcd(n, k) 所以共有 gcd(n, k) 个循环节 然后我们暴力扒出每一个循环节 循环节里面的元素放到一个新数组中.使其相邻 然后通过收尾相连接的方法模拟…
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: 为什么加椅子?我们可以在最左边或最右边一直加直到人人都有座位. 首先这道题目抽象成二分图很简单,然后我们可以只要求解出人与座位的最大匹配是多少,总人数减去即可,但跑二分图最大匹配显然会超时,我们就可以往霍尔定理方面想. 然后你还需要知道一个霍尔定理推论:假设某个人的集合为\(X\),这个集合所对应的…
题意 题目链接 分析 又是一个二分图匹配的问题,考虑霍尔定理. 根据套路我们知道只需要检查 "区间的并是一段连续的区间" 这些子集. 首先将环倍长.考虑枚举答案的区间并的右端点 \(r\),显然 \(r\) 应该在某个区间的右端点上.我们想要判断是否存在一个 \(l\) 使得 \(r-l+1\le m\) 且 \(\sum\limits_{l\le L_i,R_i\le r}a_i>r-l+1\) ,扫描线+线段树 即可. 有一类特殊情况:区间的并是整个环,这时它在序列上的表示长…
题意 一共有 \(n\) 堆石子,每堆石子有一个数量 \(a\) ,你要进行 \(m\) 次操作,每次操作你可以在满足前 \(i-1\) 次操作的回答的基础上选择在 \([L_i,R_i]\) 区间中拿走至多 \(b\) 颗石子,保证区间不存在包含关系,求每次你最多拿走多少颗石子. \(n\le 4\times 10^4\) 分析 二分图匹配复杂度太高,考虑霍尔定理. 假设某次操作时我们已经知道了每次操作取走多少颗石子,我们选择判断的操作集合一定是按 \(L\) 排序之后连续的(因为能够选择的区…
传送门:http://uoj.ac/problem/299 题目良心给了Bayes定理,但对于我这种数学渣来说并没有什么用. 先大概讲下相关数学内容: 1.定义:$P(X)$ 表示事件$X$发生的概率,$E(X)$表示随机变量$X$的期望值,$P(A|B)$表示已知$B$发生,$A$发生的概率,$P(AB)$表示$A$和$B$同时发生的概率. 2.条件概率公式: $\begin{aligned}P(A|B)=\frac{P(AB)}{P(B)}\end{aligned}$. 由$P(B)P(A|…
[#3073. Pa2011]Journeys (线段树优化连边) 这张图太直观了,直接讲透了线段树优化连边的原理和正确性. 考虑建立两颗线段树,一颗是外向树,一颗是内向树,相当于网络流建模一样,我们可以利用这两颗线段树分别模拟一个点的入度和出度.毕竟一个点如果确定了它的入度和出度就相当于确定了在图中的位置. 外向树 一条边进入了一个父亲节点,相当于能进入它所有的儿子,这就模拟了入度.这和线段树很像,于是我们就做成线段树的样子,每次加边的时候,最多从外向树选出\(O(\log n)​\)的节点,…
题目传送门(内部题146) 输入格式 从$geography.in$读入数据. 第一行两个数$n,m$,表示有$n$个点,$m$个时刻.接下来$m$行每行三个数,要么是$1\ u\ v$,要么是$2\ u\ v$,分别表示添加一条无向边和删除一条无向边. 输出格式 输出答案到$geography.out$. 共$m$行,每行一个数表示连通块大小乘积$\mod 1,000,000,007$. 样例 样例输入: 5 61 1 31 2 31 1 21 4 51 3 42 3 4 样例输出: 2336…
题目大意:给出一个n个元素的数组A,A中所有元素都是不重复的[1,n].有两种操作:1.将pos位置的元素+1e72.查询不属于[1,r]中的最小的>=k的值.强制在线. 题解因为数组中的值唯一,且在1到n的范围内,而询问的r和k也在1到n的范围内. 所以对于任意一个被操 作1修改过的值都不会成为询问的答案,而询问的结果也必然在k到n+1的范围内. 因为没有被修改过 值是唯一的,所以可以建立权值线段树,维护权值区间内的值所在下标的最大值.而询问则转化为不小 于k的值里面,下标超过r的最小权值是多…
题目背景 传说中,在远古时代,巨龙大$Y$将$P$国的镇国之宝窃走并藏在了其巢穴中,这吸引着整个$P$国的所有冒险家前去夺回,尤其是皇家卫士队的队长小$W$.在$P$国量子科技实验室的帮助下,队长小$W$通过量子传输进入了巨龙大$Y$的藏宝室,并成功夺回了镇国之宝.但此时巨龙布下的攻击性防壁启动,将小$W$困在了美杜莎的迷宫当中. 题目传送门(内部题41) 输入格式 第一行一个数$n$,表示水晶的个数.接下来的$n$行,每行两个数$A_i,B_i$,表示第$i$个位置上的水晶的属性值. 输出格式…
题目链接:https://www.jisuanke.com/contest/6516 A:题目: 我们称一个数是质数,而且数位中出现了 5 的数字是有趣的. 例如 5, 59, 457.求1到100000中有趣的数的个数. 题解:无脑分解和暴力枚举素数即可. 代码: #include <algorithm> #include <cstdio> #include <cmath> #include <cstring> #include <iostream&…
由于只会T1,没法写游记,只好来写题解了... 题目链接 题目大意 给你一个数列,每次可以任取两个不相交的区间,取一次的贡献是这两个区间里所有数的最小值,求所有取法的贡献和,对 \(10^9+7\) 取模. 数列长度 \(2\times 10^5\) ,值域 \(1\) ~ \(10^9\) . \(O(n^4)\) 做法 预处理区间最小值,枚举选的两个区间. #include <iostream> #include <cstdio> #include <algorithm&…
题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 B 的差分信息进行差分.在修改的时候,我们就会在 A 上 4 个位置进行修改,每次修改会涉及 B 上 4 个位置的差分修改,因此总共会涉及 16 个差分信息的修改. 回收标记的时候,我们可以先在 A 树上进行 DFS ,回收好子树内的差分信息后,再进行一次 B 的回收,得到当前节点上 B 的真实信息. 时间…
题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子连边之后,我们一定可以得到一些链.假设每条轨道的最后一段作为链头,查询实际上就是查询所在链的链头. 使用 LCT 或 Splay 维护这些链即可,时间\(O(n\log_2n)\). #include <cstdio> #include <vector> using namespace…
最少分组 题意 \(n\) 个点 \(m\) 条边的无向图,可以删掉 0 条或多条边,求满足条件的最小连通块数量: 对每个顶点对 \((a,b)\) ,若 \(a\) 和 \(b\) 同属于一个连通块,则 \(a,b\) 之间有边 \(n\le 18\) 题解 显然状压 设 \(f[V]\) 表示点集为 \(V\) 时的答案,则 \[f[V]=\min f[V']+f[V-V'] \] 其中 \(V'\) 是 \(V\) 的子集 初始化:\(f[S]=1\) 当且仅当 \(S\) 是原图的完全字…
[问题描述] Mark Douglas是一名优秀的锻造师.与他优秀的锻造水平不相符,他非常穷,以至于很多好刀都因为缺少素材缺少资金无法打造. Mark把他有能力锻造的所有n种刀建成了一棵锻造树,除了第1种刀可以直接打造以外,其他的刀都只能从某一种刀加工而来.具体而言,第i种刀只能从第fai种刀加工而来,花费的费用为wi,但是第fai种刀不能由第i种刀逆加工得到.Mark定义一种刀的价值为利用他现有的刀进行打造的花费.他虽然穷,但是眼光很高,价值低于一定值的刀他都看不上.现在有q次询问,每次询问当…
题目   比赛界面. T1   比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配.   尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它会影响的垂直方向上的鱼竿一定是一个区间,因此再套一发线段树优化即可.   这里不建议写倍增优化,因为倍增的点是\(O(n\log_2n)\),而网络流的时间是\(O(n^2m)\),因此可能会慢一些.   当然,你知道,这细网咯流咩......时间复杂度还是比较emmmm......的   代码:…
前言: 真的是不容易啊.这个题在考场上想到了最关键的性质,但是没写出来. 后来写出来,一直调,小错不断. 没想到改的最后一个错误是两个int 乘起来爆了int 其实最后我还是觉得复杂度很假.\(n^2\) 过百万. 此处对拍使用了DeepinC的代码,计算正确答案使用了硕队和张大仙的代码,感谢. 不过我感觉写的太罗嗦了,200行. 解析: 容易发现,每个建筑长高,当且仅当它左右都比它高.于是考场上我扫了一边,拿到了0分的好成绩. 因为如果这样想的话,一个建筑是可以长高多次的.假如有一个序列 \(…
题面 给定一棵 n n n 个结点的无根树,每条边的边权均为 1 1 1 . 树上标记有 m m m 个互不相同的关键点,小 A \tt A A 会在这 m m m 个点中等概率随机地选择 k k k 个不同的点放上小饼干.你想知道,经过有小饼干的 k k k 个点的最短路径长度的期望是多少.注意,你可以任意选取起点和终点,路径也可以经过重复的点或重复的边. 2 ≤ k ≤ m ≤ n ≤ 2000 2\leq k\leq m\leq n\leq2000 2≤k≤m≤n≤2000 . m ≤ 3…