pytorch 查看中间变量的梯度】的更多相关文章

pytorch 为了节省显存,在反向传播的过程中只针对计算图中的叶子结点(leaf variable)保留了梯度值(gradient).但对于开发者来说,有时我们希望探测某些中间变量(intermediate variable) 的梯度来验证我们的实现是否有误,这个过程就需要用到 tensor的register_hook接口.一段简单的示例代码如下,代码主要来自pytorch开发者的回答,笔者稍作修改使其更符合最新版的pytorch 语法(v1.2.0). grads = {} def save…
在用pdb debug的时候,有时候需要看一下特定layer的权重以及相应的梯度信息,如何查看呢? 1. 首先把你的模型打印出来,像这样 2. 然后观察到model下面有module的key,module下面有features的key, features下面有(0)的key,这样就可以直接打印出weight了,在pdb debug界面输入p model.module.features[0].weight,就可以看到weight,输入 p model.module.features[0].weig…
PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,tensor将开始追踪在其上的所有操作 .backward()完成梯度计算 .grad属性 计算的梯度累积到.grad属性 .detach()解除对一个tensor上操作的追踪,或者用with torch.no_grad()将不想被追踪的操作代码块包裹起来. .grad_fn属性 该属性即创建Tensor…
import torch import torchvision print(torch.cuda.is_available()) 上面的命令只是检测CUDA是否安装正确并能被Pytorch检测到,并没有说明是否能正常使用,要想看Pytorch能不能调用cuda加速,还需要简单的测试一下: a = torch.Tensor(5,3) a=a.cuda()print(a) 一般来讲,输出主要是报48号错误,也就是CUDA的问题,出现这个问题在于硬件的支持情况,对于算力3.0的显卡来说,如果安装了9.…
如果你用的 Keras 或者 TensorFlow, 请移步 怎么查看keras 或者 tensorflow 正在使用的GPU In [1]: import torch In [2]: torch.cuda.current_device() Out[2]: 0 In [3]: torch.cuda.device(0) Out[3]: <torch.cuda.device at 0x7efce0b03be0> In [4]: torch.cuda.device_count() Out[4]: 1…
对于torch中训练时,反向传播前将梯度手动清零的理解 简单的理由是因为PyTorch默认会对梯度进行累加.至于为什么PyTorch有这样的特点,在网上找到的解释是说由于PyTorch的动态图和autograd机制使得其非常灵活,这也意味着你可以得到对一个张量的梯度,然后再次用该梯度进行计算,然后又可重新计算对新操作的梯度,对于何时停止前向操作并没有一个确定的点.所以自动设置梯度为0比较棘手,因为你不知道什么时候一个计算会结束以及什么时候又会有一个新的开始.默认累加的好处是当在多任务中对前面共享…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 torch.autograd就是为了方便用户使用,专门开发的一套自动求导引擎,她能够根据输入和前向传播过程自动构建计算图,并执行反向传播 1.Variable 深度学习算法的本质是通过反向函数求导数,pytorch的Autograd模块实现了此功能.在Tensor上的所有操作,Autograd都能够为他们自动提供微分,避免手动计算的复杂…
参考深度学习框架pytorch:入门和实践一书第六章 以深度学习框架PyTorch一书的学习-第六章-实战指南为前提 在pytorch中Debug pytorch作为一个动态图框架,与ipdb结合能为调试过程带来便捷 对tensorflow等静态图来说,使用python接口定义计算图,然后使用c++代码执行底层运算,在定义图的时候不进行任何计算,而在计算的时候又无法使用pdb进行调试,因为pdb调试只能挑事python代码,故调试一直是此类静态图框架的一个痛点 与tensorflow不同,pyt…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 pytorch的设计遵循tensor-> variable(autograd)-> nn.Module三个由低到高的抽象层次,分别代表高维数组(张量).自动求导(变量)和神经网络(层/模块).这三个抽象之间联系紧密,可以同时进行修改和操作 在IPython和Jupyter notebook两个工具中使用了Jupyter noteboo…
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出现的原因,当前最流行的深度学习框架如PyTorch.Tensorflow等都提供了自动微分的支持,让人们只需要很少的工作就能神奇般地自动计算出复杂函数的梯度. PyTorch的autograd简介 Tensor是PyTorch实现多维数组计算和自动微分的关键数据结构.一方面,它类似于numpy的nd…