参考链接:http://sebastianruder.com/optimizing-gradient-descent/ 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误,还望读者能不吝指出.另外,由于原文太长,分了两部分翻译,本篇主要是梯度下降优化算法的总结,下篇将会是随机梯度的并行和分布式,以及优化策略的总结. 梯度下降是优化中最流行的算法之一,也是目前用于优化神经网络最常用到的方法.同时,每个优秀的深度学习库都包含了优化梯度下降的多种算法的实现(比如, las…
最近读一个代码发现用了一个梯度更新方法, 刚开始还以为是什么奇奇怪怪的梯度下降法, 最后分析一下是用一阶梯度及其二次幂做的梯度更新.网上搜了一下, 果然就是称为Adam的梯度更新算法, 全称是:自适应矩估计(adaptive moment estimation) 国际惯例, 参考博文: 一文看懂各种神经网络优化算法:从梯度下降到Adam方法 Adam:一种随机优化方法 An overview of gradient descent optimization algorithms 梯度下降优化算法…
补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmsprop.sgd,效果最好的组合是:prelu+rmsprop.我的代码如下: # Simple example using recurrent neural network to predict time series values from __future__ import division, p…
数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization) 2015年12月27日 18:51:19 下一步 阅读数 4357更多 分类专栏: 数值优化   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/fangqingan_java/article/details/48946903 概述 在实际应用中,有些目…
https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学课的期末读书报告,我选择的主题是「分析深度学习中的各个优化算法」.在此前的工作中,自己通常就是无脑「Adam 大法好」,而对算法本身的内涵不知所以然.一直希望能抽时间系统的过一遍优化算法的发展历程,直观了解各个算法的长处和短处.这次正好借着作业的机会,补一补课. 本文主要借鉴了 @Juliuszh…
笔记:Andrew Ng's Deeping Learning视频 摘抄:https://xienaoban.github.io/posts/58457.html 本章介绍了优化算法,让神经网络运行的更快 1. 梯度优化算法 1.1 Mini-batch 梯度下降 将 \(X = [x^{(1)}, x^{(2)}, x^{(3)}, ..., x^{(m)}]\) 矩阵所有 \(m\) 个样本划分为 \(t\) 个子训练集,每个子训练集,也叫做mini-batch: 每个子训练集称为 \(x^…
# Author Qian Chenglong from numpy import * from numpy.ma import arange def loadDataSet(): dataMat = [] labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0, float(lineArr[0]), float(li…
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练样本涵盖,速度也会较快.但当数据量急剧增大,达到百万甚至更大的数量级时,组成的矩阵将极其庞大,直接对这么大的的数据作梯度下降,可想而知速度是快不起来的.故这里将训练样本分割成较小的训练子集,子集就叫mini-batch.例如:训练样本数量m=500万,设置mini-batch=1000,则可以将训练…
1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当为1时,称为随机梯度下降 一般我们选择64,128, 256等样本数目 import numpy as np import math def random_mini_batch(X, Y, mini_batch = 64, seed=0): np.random.seed(seed) m = X.sh…
所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-batch进行梯度下降 mini-batch大小 = m: 极限情况下,当mini-batch的单个子集样本数量和原集合大小一致都为m时,也就是说对原样本只划分一个子集,这意味着没有划分,此时的梯度下降法为原始的Batch梯度下降 batch方法意味着每次迭代对大量的数据进行处理,这意味着在进行深度神经网…