深度学习三巨头之一来清华演讲了,你只需要知道这7点 http://wemedia.ifeng.com/10939074/wemedia.shtml Yann LeCun还提到了一项FAIR开发的,用于检测.分割.识别单张图像中每个物体的技术,比如在一盘菜里检测.分割.并识别出西兰花来.又或是在一堆羊群里分割出每只羊,其核心流程为以下三步(去年8月都已开源): 1)使用DeepMask这个新型框架对物体进行检测与分割,生成初始对象掩膜(Mask,相当于一个覆盖区域): 2)使用SharpMask模…
中间表示: C -> C1.C2.C3 i:target -> IT j: source -> JS sim(Query, Key) -> Value Key:h_j,类似某种“basis”: 从图9可以引出另外一种理解,也可以将Attention机制看作一种软寻址(SoftAddressing):Source可以看作存储器内存储的内容,元素由地址Key和值Value组成,当前有个Key=Query的查询,目的是取出存储器中对应的Value值,即Attention数值.通过Quer…
深度学习在美团配送 ETA 预估中的探索与实践 比前一版本有改进:   基泽 周越 显杰 阅读数:32952019 年 4 月 20 日   1. 背景 ETA(Estimated Time of Arrival,“预计送达时间”),即用户下单后,配送人员在多长时间内将外卖送达到用户手中.送达时间预测的结果,将会以”预计送达时间”的形式,展现在用户的客户端页面上,是配送系统中非常重要的参数,直接影响了用户的下单意愿.运力调度.骑手考核,进而影响配送系统整体成本和用户体验. 对于整个配送系统而言,…
论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey  发表于 2019-02-14 |  更新于 2019-05-15 |  分类于 目标检测 |  阅读次数: 23  本文字数: 3.3k 博客:blog.shinelee.me | 博客园 | CSDN [toc] 写在前面 paper:https://arxiv.org/abs/1809.02165github:https://gith…
服务的注册与发现是微服务必不可少的功能,这样系统才能有更高的性能,更高的可用性.go-micro框架的服务发现有自己能用的接口Registry.只要实现这个接口就可以定制自己的服务注册和发现. go-micro在客户端做的负载,典型的Balancing-aware Client模式. 服务端把服务的地址信息保存到Registry, 然后定时的心跳检查,或者定时的重新注册服务.客户端监听Registry,最好是把服务信息保存到本地,监听服务的变动,更新缓存.当调用服务端的接口是时,根据客户端的服务…
    Pull requestsIssues Marketplace Explore             Learn Git and GitHub without any code! Using the Hello World guide, you’ll start a branch, write comments, and open a pull request. Read the guide Watch 2,133  Star23,826 Fork5,417 floodsung/Dee…
ACM 宣布,2018 年图灵奖获得者是号称深度学习三巨头的 Yoshua Bengio, Yann LeCun 和 Geoffrey Hinton,得奖理由是:他们在概念和工程上取得的巨大突破,使得深度神经网络成为计算的关键元素(For conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing.). Yoshua Bengio Yo…
引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年11月开源的机器学习及深度学习框架.  TensorFlow在2015年年底一出现就受到了极大的关注,在一个月内获得了GitHub上超过一万颗星的关注,目前在所有的机器学习.深度学习项目中排名第一,甚至在所有的Python项目中也排名第一.本文将带我们简单了解下TensorFlow,并与其他主流深度…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_189 笔者投入M1的怀抱已经有一段时间了,俗话说得好,但闻新人笑,不见旧人哭,Intel mac早已被束之高阁,而M1 mac已经不能用真香来形容了,简直就是"香透满堂金玉彩,扇遮半面桃花开!",轻抚M1 mac那滑若柔荑的秒控键盘,别说996了,就是007,我们也能安之若素,也可以笑慰平生.好了,日常吹M1的环节结束,正所谓剑虽利,不厉不断,材虽美,不学不高.本次我们尝试在M1 Mac os 中搭建Python3的…
1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/development set).测试集(test set). 对于传统的机器学习算法,数据量(比如100.1000.10000),常用的分法是70%训练集/30%测试集.60%训练集/20%验证集/20%测试集. 对于大数据(比如100万),可能分法是98%训练集/1%验证集/1%测试集.99.5%训练集/0.…
go微服务框架go-micro深度学习(一) 整体架构介绍 go微服务框架go-micro深度学习(二) 入门例子 go微服务框架go-micro深度学习(三) Registry服务的注册和发现 go微服务框架go-micro深度学习(四) rpc方法调用过程详解 go微服务框架go-micro深度学习(五) stream 调用过程详解 代码在github上…
上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地址信息,就可以和服务建立连接,然后就可以进行通信了.这篇帖子详细说一下,go-micro的通信协议.编码,和具体服务方法的调用过程是如何实现的,文中的代码还是我github上的例子: gomicrorpc go-micro 支持很多通信协议:http.tcp.grpc等,支持的编码方式也很多有jso…
摘要: 上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地址信息,就可以和服务建立连接,然后就可以进行通信了. 上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地址信息,就可以和服务建立连接,然后就可…
本文转自:http://www.jiqizhixin.com/article/2321 机器学习很有趣Part6:怎样使用深度学习进行语音识别 2017-02-19 13:20:47    机器学习    00 0 还记得machine learning is fun吗?本文是该系列文章的第六部分,博主通俗细致地讲解了神经网络语音识别的整个过程, 是篇非常不错的入门级文章. 语音识别正闯入我们的生活.它内置于我们的手机.游戏机和智能手表.它甚至正在让我们的家庭变得自动化.只需要 50 美元,你就…
参考文献:<Tensorflow:实战Google深度学习框架> [一]深度学习简介 1.1 深度学习定义 Mitchell对机器学习的定义:任务T上,随着经验E的增加,效果P也可以随之增加,那么程序可以在经验中学习. 传统机器学习算法的问题:无法从数据中习得更好的特征表达,从而无法有效的利用越来越多的数据 难点:如何数字化的表达现实世界中的实体:将非结构化的内容结构化:从实体中提取特征. 传统机器学习与深度学习的对比 1.2 深度学习历史 深度学习三阶段: 一.仿生机器学习: 1943年神经…
原文链接:http://www.csdn.net/article/2015-08-06/2825395 本文做了少量修改,仅作转载存贮,如有疑问或版权问题,请访问原作者或告知本人. CVPR可谓计算机视觉领域的奥运会,这是vision.ai的Co-Founder,前MIT研究人员T. Malisiewicz针对CVPR'15尤其是Deep Learning的综述文章,谈到了ConvNet的Baseline,Caffe和Torch之间的分歧,ArXiv论文热,以及百度的ImageNet违规事件等.…
深度学习引擎最佳实践 {#concept_1113021 .concept} 阿里云Web应用防火墙采用多种Web攻击检测引擎组合的方式为您的网站提供全面防护.Web应用防火墙采用规则引擎.语义分析和深度学习三种引擎组合的方式,充分发挥阿里云强大的情报.数据分析体系和专家漏洞挖掘经验的优势.基于阿里云云上攻击数据分析抓取0day漏洞,由安全专家对漏洞进行主动挖掘和分析,并最终总结沉淀为防护规则策略.Web应用防火墙的规则策略每周更新,远超业界水平,致力于为用户提供最快.最全面的防护能力. 随着互…
推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模型理论和实践:https://www.jianshu.com/p/152ae633fb00推荐系统遇上深度学习(二)--FFM模型理论和实践:https://www.jianshu.com/p/781cde3d5f3d推荐系统遇上深度学习(三)--DeepFM模型理论和实践:https://www.…
1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/development set).测试集(test set). 对于传统的机器学习算法,数据量(比如100.1000.10000),常用的分法是70%训练集/30%测试集.60%训练集/20%验证集/20%测试集. 对于大数据(比如100万),可能分法是98%训练集/1%验证集/1%测试集.99.5%训练集/0.…
新增了六个教程: TensorFlow 2 和 Keras 高级深度学习 零.前言 一.使用 Keras 入门高级深度学习 二.深度神经网络 三.自编码器 四.生成对抗网络(GAN) 五.改进的 GAN 六.纠缠表示 GAN 七.跨域 GAN 八.变分自编码器(VAE) 九.深度强化学习 十.策略梯度方法 十一.对象检测 十二.语义分割 十三.使用互信息的无监督学习 GCP 上的人工智能实用指南 零.前言 第 1 节:Google Cloud Platform 的基础 一.AI 和 GCP 概述…
使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能. 在本文中我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中.这个任务会通过 VideoStream 类来完成. 深度学习目标检测教程:http://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-…
MIT(Deep Learning for Self-Driving Cars) CMU(Deep Reinforcement Learning and Control ) 参考网址: 1 Deep Learning for Self-Driving Cars  --  6.S094 http://selfdrivingcars.mit.edu/ 2 Deep Reinforcement Learning and Control  --  10703 https://katefvision.gi…
ZigBee学习三 UART通信 在使用串口时,只需掌握ZigBee协议栈提供的串口操作相关的三个函数即可. uint8 HalUARTOpen(uint8 port,halUARTCfg_t *config); uint16 HalUARTRead(uint8 port,uint8 *buf,uint16 len); uint16 HalUARTWrite(uint8 port,uint8 *buf,uint16 len); 本实验只对coordinator.c文件进行改动就可以实现串口的收发…
http://wallstreetcn.com/node/248376 借助深度学习,多处理层组成的计算模型可通过多层抽象来学习数据表征( representations).这些方法显著推动了语音识别.视觉识别.目标检测以及许多其他领域(比如,药物发现以及基因组学)的技术发展.利用反向传播算法(backpropagation algorithm)来显示机器将会如何根据前一层的表征改变用以计算每层表征的内部参数,深度学习发现了大数据集的复杂结构.深层卷积网络(deep convolutional…
http://www.tuicool.com/articles/MBBbeeQ 在AlphaGo与李世石比赛期间,谷歌天才工程师Jeff Dean在Google Campus汉城校区做了一次关于智能计算机系统的大规模深度学习(Large-Scale Deep Learning for Intelligent Computer Systems)的演讲.本文是对他这次演讲的总结. 如果你无法理解信息里包含的内容,那么就会很难将其组织起来. 自从AlphaGo与李世石的比赛——这是约翰·亨利对战蒸汽锤…
一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 或者coursera看Andrew Ng 的机器学习课程.二者只是在某些公式表达上有细微的差距. 二. 卷积神经网络CONVNET 此部分来自 http://m.blog.csdn.net/ar…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 torch.autograd就是为了方便用户使用,专门开发的一套自动求导引擎,她能够根据输入和前向传播过程自动构建计算图,并执行反向传播 1.Variable 深度学习算法的本质是通过反向函数求导数,pytorch的Autograd模块实现了此功能.在Tensor上的所有操作,Autograd都能够为他们自动提供微分,避免手动计算的复杂…
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把NVIDIA显卡驱动安装好了 一.安装CUDA CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务,想使用GPU就必须要使用CUDA.…