1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
1.概述 最近有同学留言咨询,Flink消费Kafka的一些问题,今天笔者将用一个小案例来为大家介绍如何将Kafka中的数据,通过Flink任务来消费并存储到HDFS上. 2.内容 这里举个消费Kafka的数据的场景.比如,电商平台.游戏平台产生的用户数据,入库到Kafka中的Topic进行存储,然后采用Flink去实时消费积累到HDFS上,积累后的数据可以构建数据仓库(如Hive)做数据分析,或是用于数据训练(算法模型).如下图所示: 2.1 环境依赖 整个流程,需要依赖的组件有Kafka.F…
Flink 学习 项目地址:https://github.com/zhisheng17/flink-learning/ 博客:http://www.54tianzhisheng.cn/tags/Flink/ 项目结构 ├── README.md ├── flink-learning-cep ├── flink-learning-common ├── flink-learning-connectors │   ├── flink-learning-connectors-activemq │   ├…
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认…
目       录 1.      概述... 2 2.      平台演示... 2 3.      设备容器新版本介绍... 2 4.      全局数据计算及预警平台... 3 5.      设备数据计算及预警... 4 6.      独立数据点的预警... 5 1.   概述 这次升级主要对iNeuKernel设备容器全面进行改版和升级,以及增加对设备数据和独立数据点进行计算及预警. iNeuKernel是iNeuOS内核设备运行容器,是以物理设备或传感器为核心构建的框架,可以随意挂…
Flink消费Kafka https://blog.csdn.net/boling_cavalry/article/details/85549434 https://www.cnblogs.com/smartloli/p/12499142.html Flink消费rocketMQ https://github.com/apache/rocketmq-externals/tree/master/rocketmq-flink…
1.概述 对于数据的转发,Kafka是一个不错的选择.Kafka能够装载数据到消息队列,然后等待其他业务场景去消费这些数据,Kafka的应用接口API非常的丰富,支持各种存储介质,例如HDFS.HBase等.如果不想使用Kafka API编写代码去消费Kafka Topic,也是有组件可以去集成消费的.下面笔者将为大家介绍如何使用Flume快速消费Kafka Topic数据,然后将消费后的数据转发到HDFS上. 2.内容 在实现这套方案之间,可以先来看看整个数据的流向,如下图所示: 业务数据实时…
package com.gm.hive.SparkHive; import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import org.apache.kafka.clients.consumer.ConsumerRecord; import o…
对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据:对于 Direct Approach 的数据接收,我们可以通过配置 spark.streaming.kafka.maxRatePerPartition 参数来限制每次作业中每个 Kafka 分区最多读取的记录条数. 这种限速的弊端很明显,比如假如我们后端处理能力超过了这个最大的限制,会导致资源浪费.需要对每个spark…
每个并发有个编号,只会读取kafka partition  % 总并发数 == 编号 的分区   如: 6 分区, 4个并发 分区: p0 p1 p2 p3 p4 p5 并发: 0 1 2 3    分区 p0 分配给并发 0 :    0 % 4 = 0 分区 p1分配给并发1:    1 % 4 = 1 分区 p2分配给并发2:    2 % 4 = 2 分区 p3 分配给并发 3:    3 % 4 = 3 分区 p4 分配给并发 0 :    4 % 4 = 0 分区 p5 分配给并发 …