Spark调优指南】的更多相关文章

Spark相关问题 Spark比MR快的原因? 1) Spark的计算结果可以放入内存,支持基于内存的迭代,MR不支持. 2) Spark有DAG有向无环图,可以实现pipeline的计算模式. 3) 资源调度模式:Spark粗粒度资源调度,MR是细粒度资源调度. 资源复用:Spark中的task可以复用同一批Executor的资源. MR里面每一个map task对应一个jvm,不能复用资源. Spark中主要进程的作用? Driver进程:负责任务的分发和结果的回收. Executor进程:…
通过Spark作业将数据写入Hudi时,Spark应用的调优技巧也适用于此.如果要提高性能或可靠性,请牢记以下几点. 输入并行性:Hudi对输入进行分区默认并发度为1500,以确保每个Spark分区都在2GB的限制内(在Spark2.4.0版本之后去除了该限制),如果有更大的输入,则相应地进行调整.我们建议设置shuffle的并发度,配置项为hoodie.[insert|upsert|bulkinsert].shuffle.parallelism,以使其至少达到input_data_size/5…
SparkStreaming是架构在SparkCore上的一个"应用",SparkStreaming主要由DStreamGraph.Job的生成.数据的接收和导入以及容错四大模块组成,我们今天就从这四大模块入手,看看每个模块都有什么样的调优方式 1 DStreamGraph 其实这部分主要是算子的使用优化,这个跟Spark调优的内容是相同,在这一部分可以优化的内容有 重复使用的rdd进行cache 使用高性能的算子代替性能差的算子 reduceByKey\aggregateByKey代…
Spark调优,性能优化 1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitions替代foreach 4.使用filter之后进行coalesce操作 5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作 6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合…
Spark版本:1.1.0 本文系以开源中国社区的译文为基础,结合官方文档翻译修订而来,转载请注明以下链接: http://www.cnblogs.com/zhangningbo/p/4117981.html http://www.oschina.net/translate/spark-tuning 目录 数据序列化 内存优化 确定内存消耗 优化数据结构 序列化RDD存储 优化内存回收 其他考虑因素 并行度 Reduce任务的内存用量 广播”大变量“ 总结 因为大多数Spark程序都具有“内存计…
每一次成功的调优,都会诞生又一份的调优指南. 一些必须写在前面的军规,虽然与Java应用的调优没直接关联,但是测试同学经常不留神的地方. 1 独占你的测试机器 包括跑JMeter的那些机器. "top"或者"pidstat -l 2 10" 看一下,其他的路人甲乙丙丁的应用都关干净了没. 如果是云主机,确保百分百占有宿主机的资源,或者深夜大家下班了你在家连VPN回来跑. 2 了解你的测试机器 必须完完全全的了解你的机器,才知道有没卡在某个瓶颈,或者与线上环境.其他测…
[场景] Spark提交作业job的时候要指定该job可以使用的CPU.内存等资源参数,生产环境中,任务资源分配不足会导致该job执行中断.失败等问题,所以对Spark的job资源参数分配调优非常重要. spark提交作业,yarn-cluster模式示例: ./bin/spark-submit\ --class com.ww.rdd.wordcount \ --master yarn \ --deploy-mode cluster \  --executor-memory 4G \ --num…
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,此时可以考虑采用本解决方案. [解决方案] 对有数据倾斜那个RDD,使用sample算子采样出一份样本,统计下每个key的数量,看看导致数据倾斜数据量最大的是哪几个key. 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个ke…
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] 小表join大表转为小表broadcast+map大表实现.具体为: 普通的join是会shuffle的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join,此时如果发生数据倾斜,影响处理性能,而此时恰好一…
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.比如大部分key对应10条数据,但是个别key却对应了百万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了:但是个别task可能分配到了百万数据,要运行一两个小时.木桶原理,整个作业的运行进度是由运行…