转载:Cubic interpolation】的更多相关文章

https://www.paulinternet.nl/?page=bicubic Cubic interpolation If the values of a function f(x) and its derivative are known at x=0 and x=1, then the function can be interpolated on the interval [0,1] using a third degree polynomial. This is called cu…
根据已有数据以及模型(函数)预测未知区域的函数值,预测的点在已有数据范围内就是interpolation(插值), 范围外就是extrapolation(外推). The Difference Between Extrapolation and Interpolation figure:  The left is an example of interpolation and the right is an example of extrapolation.…
Mathematics     One-Dimensional Interpolation There are two kinds of one-dimensional interpolation in MATLAB: Polynomial interpolation FFT-based interpolation Polynomial Interpolation The function interp1 performs one-dimensional interpolation, an im…
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点.插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值.曲面插值是对三维数据进行离散逼近的方法,MATLAB中的曲面插值函数有Triscatteredinterp,interp2,griddata等.我们以griddata为例讲解曲面插值及其交叉验证的过程. 一.  gridata曲面插值 gridata不仅可以对三维曲面进行插值,还能对四维的超平面进行插值.griddata的调…
傅里叶变换可以用于将图像从时域转换到频域,对于分行的文本,其频率谱上一定会有一定的特征,当图像旋转时,其频谱也会同步旋转,因此找出这个特征的倾角,就可以将图像旋转校正回去. 先来对原始图像进行一下傅里叶变换,需要这么几步: 1.以灰度方式读入原文件 1 2 string filename = "source.jpg"; var src = IplImage.FromFile(filename, LoadMode.GrayScale); 2.将图像扩展到合适的尺寸以方便快速变换 Open…
基础知识: 1.python基础知识   快速学习链接:https://www.shiyanlou.com/courses/214 2.linux命令行操作   快速学习链接:https://www.shiyanlou.com/courses/1 3.pillow库的使用     快速学习链接:http://pillow.readthedocs.io/en/latest/index.html(英文) http://www.cnblogs.com/apexchu/p/4231041.html(中文…
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值…
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(Steepest Descent),可用于寻找函数的局部最小值.梯度下降的思路为,函数值在梯度反方向下降是最快的,只要沿着函数的梯度反方向移动足够小的距离到一个新的点,那么函数值必定是非递增的,如图1所示. 梯度下降思想的数学表述如下: b=a−α∇F(a)⇒f(a)≥f(b)(1)(1)b=a−α∇F…
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(Steepest Descent),可用于寻找函数的局部最小值.梯度下降的思路为,函数值在梯度反方向下降是最快的,只要沿着函数的梯度反方向移动足够小的距离到一个新的点,那么函数值必定是非递增的,如图1所示. 梯度下降思想的数学表述如下: \begin{equation} b=a-\alpha \nabl…
2011-05-25 17:21 非刚性图像配准 matlab简单示例 demons算法, % Clean clc; clear all; close all; % Compile the mex files %compile_c_files % Read two images I1=im2double(imread('ssftrinew1.png'));  I2=im2double(imread('ssftri.png')); % Set static and moving image S=I…