在MySQL中,主要有四种类型的索引,分别为:B-Tree索引,Hash索引,Fulltext索引和R-Tree索引,本文讲的是B-Tree索引. 什么是索引 索引(Index)是帮助数据库高效获取数据的数据结构.索引是在基于数据库表创建的,它包含一个表中某些列的值以及记录对应的地址,并且把这些值存储在一个数据结构中.最常见的就是使用哈希表.B+树作为索引. 为什么要使用索引 我们知道,数据库查询是数据库最主要的功能之一.而查询速度当然是越快越好.而当数据量越来越大的时候,查询花费的时间会随之增…
前言 使用过springboot的同学应该已经知道,springboot通过默认配置了很多框架的使用方式帮我们大大简化了项目初始搭建以及开发过程.本文的目的就是一步步分析springboot的启动过程,分析springboot是如何帮我们简化这个过程的. springboot帮我们做了什么 通常搭建一个基于spring的web应用,我们需要做以下工作: 1.pom文件中引入相关jar包,包括spring.springmvc.redis.mybaits.log4j.mysql-connector-…
死磕以太坊源码分析之MPT树-上 前缀树Trie 前缀树(又称字典树),通常来说,一个前缀树是用来存储字符串的.前缀树的每一个节点代表一个字符串(前缀).每一个节点会有多个子节点,通往不同子节点的路径上有着不同的字符.子节点代表的字符串是由节点本身的原始字符串,以及通往该子节点路径上所有的字符组成的.如下图所示: Trie的结点看上去是这样子的: [ [Ia, Ib, - I*], value] 其中 [Ia, Ib, ... I*] 在本文中我们将其称为结点的 索引数组 ,它以 key 中的下…
死磕以太坊源码分析之MPT树-下 文章以及资料请查看:https://github.com/blockchainGuide/ 上篇主要介绍了以太坊中的MPT树的原理,这篇主要会对MPT树涉及的源码进行拆解分析.trie模块主要有以下几个文件: |-encoding.go 主要讲编码之间的转换 |-hasher.go 实现了从某个结点开始计算子树的哈希的功能 |-node.go 定义了一个Trie树中所有结点的类型和解析的代码 |-sync.go 实现了SyncTrie对象的定义和所有方法 |-i…
简介: B+树中只有叶子节点会带有指向记录的指针,而B树则所有节点都带有 B+树索引可以分为聚集索引和非聚集索引 mysql使用B+树,其中Myisam是非聚集索引,innoDB是聚集索引 聚簇索引索引的叶节点就是数据节点:而非聚簇索引的叶节点仍然是索引节点,只不过有一个指针指向对应的数据块. B树: B+树: B+ 树的特点: (1)所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的; (2)不可能在非叶子结点命中; (3)非叶子结点相当于是叶子结点的索引(稀疏索引)…
B-树 B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树 它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.下图是 B-树的简化图. B-树有如下特点: 所有键值分布在整颗树中: 任何一个关键字出现且只出现在一个结点中: 搜索有可能在非叶子结点结束: 在关键字全集内做一次查找,性能逼近二分查找: B+ 树 B+树是B-树的变体,也是一种多路搜索树, 它与 B- 树的不同之处在于: 所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/details/100107832 前文讲了二叉树和多路树,二叉树的性能很好,像AVL树.红黑树都是很优秀的结构,那么在数据库索引中,并没有采用二叉树这种结构,这是为什么呢?因为,有性能更好的树来做搜索!目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构. 一.B-树和B+…
什么是索引? 所谓的索引,就是帮助 MySQL 高效获取数据的排好序的数据结构.因此,根据索引的定义,构建索引其实就是数据排序的过程. 平时常见的索引数据结构有: 二叉树 红黑树 哈希表 B Tree 谈谈一个潜在的误区 我们首先需要澄清一点:MySQL 跟 B+ 树其实没有直接的关系,真正与 B+ 树有关系的是 MySQL 的「默认存储引擎 InnoDB」.存储引擎的主要作用是负责数据的存储和提取(简单来说就是读写),MySQL 的一个简单架构如下图所示: 我们在创建表时就可以为当前表指定使用…
(转自http://blog.csdn.net/x1247600186/article/details/24670775) 说到存储结构,我们就会想到常用的两种存储方式:顺序存储和链式存储两种. 先来看看顺序存储,用一段地址连续的存储单元依次存储线性表中数据元素,这对于线性表来说是很自然的,但是对于树这种一对多的结构而言是否适合呢? 树中某个结点的孩子可以有多个,这就意味着,无论用哪种顺序将树中所有的结点存储到数组中,结点的存储位置都无法直接反映逻辑关系,试想一下,数据元素挨个存储,那么谁是谁的…
引言 关于数据库索引,google一个oracle index,mysql index总 有大量的结果,其中很多的使用方法推荐,**索引之n条经典建议云云.笔者认为,较之借鉴,在搞清楚了自己的需求的基础上,对备选方案的原理有个尽可能深 入全面的了解会更有利于我们的选择和决策. 因为某种方案或者技术呈现出某种优势(包括可能没有被介绍到的一定存在的限制),不是定义出来的,而是因为其实现机制决定的.就像LinkedList和 ArrayList分别适用于什么应用不是docment里面定义的,是由其本身…