https://zhuanlan.zhihu.com/p/42214716 本文是“基于Tensorflow高阶API构建大规模分布式深度学习模型系列”的第五篇,旨在通过一个完整的案例巩固一下前面几篇文章中提到的各类高阶API的使用方法,同时演示一下用tensorflow高阶API构建一个比较复杂的分布式深度学习模型的完整过程. 文本要实现的深度学习模型是阿里巴巴的算法工程师18年刚发表的论文<Entire Space Multi-Task Model: An Effective Approach…
参考 1. tensorflow模型部署系列: 完…
目前业界流行的分布式消息队列系统(或者可以叫做消息中间件)种类繁多,比如,基于Erlang的RabbitMQ.基于Java的ActiveMQ/Apache Kafka.基于C/C++的ZeroMQ等等,都能进行大批量的消息路由转发.它们的共同特点是,都有一个消息中转路由节点,按照消息队列里面的专业术语,这个角色应该是broker.整个消息系统通过这个broker节点,进行从消息生产者Producer到消费者Consumer的消息路由.当然了,生产者和消费者可以是多对多的关系.消息路由的时候,可以…
在本人的上一篇博客文章:Netty构建分布式消息队列(AvatarMQ)设计指南之架构篇 中,重点向大家介绍了AvatarMQ主要构成模块以及目前存在的优缺点.最后以一个生产者.消费者传递消息的例子,具体演示了AvatarMQ所具备的基本消息路由功能.而本文的写作目的,是想从开发.设计的角度,简单的对如何使用Netty,构建分布式消息队列背后的技术细节.原理,进行一下简单的分析和说明. 首先,在一个企业级的架构应用中,究竟何时需引入消息队列呢?本人认为,最经常的情况,无非这几种:做业务解耦.事件…
分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems>. 分布式原理.分布式集群 由多个服务器进程.客户端进程组成.部署方式,单机多卡.分布式(多机多卡).多机多卡TensorFlow分布式. 单机多卡,单台服务器多块GPU.训练过程:在单机单GPU训练,…
TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphDef 完整转换器参考 计算节点兼容性 Graph 可视化工具 3 在移动端app,使用TensorFlow Lite模型推理 android IOS Raspberry PI 使用一个TensorFlow Lite 模型在你的移动端app需要受到需要约束:首先,你必须有训练好的模型(预训练/自己训练…
由于随着神经网络层数的增多,需要训练的参数也会增多,随之而来需要的数据集就会很大,这样会造成需要更大的运算资源,而且还要消耗很长的运算时间.TensorFlow提供了一个可以分布式部署的模式,将一个训练任务拆分成多个小任务,配置到不同的计算机上完成协同运算,这样使用计算机群运算来代替单机运算,可以使训练时间大幅度缩短. 一 分布式TensorFlow角色以及原理 要想配置TensorFlow为分布训练,首先需要了解TensorFlow中关于分布式的角色分配. ps:作为分布式训练的服务端,等到各…
最近开始整理一下tensorflow,准备出一个tensorflow实战系列,以飨读者. 学习一个深度学习框架,一般遵循这样的思路:数据如何读取,如如何从图片和标签数据中读出成tensorflow可以使用的数据,其次是如何搭建网络,然后就是如何训练模型,保存模型,使用模型.最后就是可视化了. tensorflow上开发了很多有用的包:如tensorlayers,tflearns,slim等,这些包可以让你很方便的构建网络模型. 入门系列你可以直接按照tensorflow的官方文档来跑就可以了.咱…
论文A Practical Framework of Conversion Rate Prediction for Online Display Advertising 定期更新,获取更多,欢迎star. 一.论文基本描述. 本论文基于Yahoo! BrightRoll (Oath)雅虎的RTB(视频)买方平台(DSP). 由于CPA成为主流出价方式,所以转化率预估变成了关键的问题. 难点: 转化数据非常稀疏.(extremely sparse conversions) 数据延迟回传.(dela…
原文:Building Microservices On .NET Core – Part 1 The Plan 时间:2019年1月14日 作者:Wojciech Suwała, Head Architect, ASC LAB 从一开始我就喜欢.NET技术.实际上,我在2004年左右就离开了过度XML化的J2EE开发.多年来,我在Altkom Software&Consulting的团队为保险和银行业建立并维护了越来越复杂的业务解决方案.当Java处于停滞状态时,.NET平台发展很快.已创建并…
1.前言 为什么要构建锁呢?因为构建合适的锁可以在高并发下能够保持数据的一致性,即客户端在执行连贯的命令时上锁的数据不会被别的客户端的更改而发生错误.同时还能够保证命令执行的成功率. 看到这里你不禁要问redis中不是有事务操作么?事务操作不能够实现上面的功能么? 的确,redis中的事务可以watch可以监控数据,从而能够保证连贯执行的时数据的一致性,但是我们必须清楚的认识到,在多个客户端同时处理相同的数据的时候,很容易导致事务的执行失败,甚至会导致数据的出错. 在关系型数据库中,用户首先向数…
生成检查点文件(chekpoint file),扩展名.ckpt,tf.train.Saver对象调用Saver.save()生成.包含权重和其他程序定义变量,不包含图结构.另一程序使用,需要重新创建图形结构,告诉TensorFlow如何处理权重.生成图协议文件(graph proto file),二进制文件,扩展名.pb,tf.tran.write_graph()保存,只包含图形结构,不包含权重,tf.import_graph_def加载图形. 模型存储,建立一个tf.train.Saver(…
前言 ​最近,被推送了不少秒杀架构的文章,忙里偷闲自己也总结了一下互联网平台秒杀架构设计,当然也借鉴了不少同学的思路.俗话说,脱离案例讲架构都是耍流氓,最终使用SpringBoot模拟实现了部分秒杀场景,同时跟大家分享交流一下. 秒杀场景 秒杀场景无非就是多个用户在同时抢购一件或者多件商品,专用词汇就是所谓的高并发.现实中经常被大家喜闻乐见的场景,一群大妈抢购打折鸡蛋的画面一定不会陌生,如此场面让服务员大姐很无奈,赶上不要钱了. 业务特点 瞬间高并发.电脑旁边的小哥哥.小姐姐们如超市哄抢的大妈一…
前言 秒杀架构持续优化中,基于自身认知不足之处在所难免,也请大家指正,共同进步.文章标题来自码友 简介 LMAX Disruptor是一个高性能的线程间消息库.它源于LMAX对并发性,性能和非阻塞算法的研究,如今构成了Exchange基础架构的核心部分. Disruptor它是一个开源的并发框架,并获得2011 Duke's 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作. Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一…
目录 分布式原理 单机多卡 多机多卡(分布式) 分布式的架构 节点之间的关系 分布式的模式 数据并行 同步更新和异步更新 分布式API 分布式案例 Tensorflow的一个特色就是分布式计算.分布式Tensorflow是由高性能的gRPC框架作为底层技术来支持的.这是一个通信框架gRPC(google remote procedure call),是一个高性能.跨平台的RPC框架.RPC协议,即远程过程调用协议,是指通过网络从远程计算机程序上请求服务. 分布式原理 Tensorflow分布式是…
转载:https://cloud.tencent.com/developer/article/1009979 tensorflow模型的格式通常支持多种,主要有CheckPoint(*.ckpt).GraphDef(*.pb).SavedModel. 1. CheckPoint(*.ckpt) 在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”,如下图所示: 这种格式文件是由 tf.train.Saver() 对象调用 saver.save()…
平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多,所以也就从tensorflow上下手了. 下面内容主要参考&翻译: https://www.tensorflow.org/mobile/?hl=zh-cn https://github.com/tensorflow/models/blob/master/research/object_detect…
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
主要内容: 1. 直接保存,加载模型; (可以指定加载,保存的var_list) 2. 加载,保存指定变量的模型 3. slim加载模型使用 4. 加载模型图结构和参数等 tensorflow 恢复部分参数.加载指定参数 tensorflow从已经训练好的模型中,恢复(指定)权重(构建新变量.网络)并继续训练(finetuning) Tensorflow 模型持久化 Model Persistence…
分布式Tensorflow Tensorflow的一个特色就是分布式计算.分布式Tensorflow是由高性能的gRPC框架作为底层技术来支持的.这是一个通信框架gRPC(google remote procedure call),是一个高性能.跨平台的RPC框架.RPC协议,即远程过程调用协议,是指通过网络从远程计算机程序上请求服务. 分布式原理 Tensorflow分布式是由多个服务器进程和客户端进程组成.有几种部署方式,列如单机多卡和多机多卡(分布式). 单机多卡 单机多卡是指单台服务器有…
在这篇 TensorFlow 教程中,我们将学习如下内容: TensorFlow 模型文件是怎么样的? 如何保存一个 TensorFlow 模型? 如何恢复一个 TensorFlow 模型? 如何使用一个训练好的模型进行修改和微调? 1. TensorFlow 模型文件 在你训练完一个神经网络之后,你可能需要将这个模型保存下来,在后续实验中使用或者进行生产部署.那么,TensorFlow 模型文件长什么样呢?TensorFlow 模型主要包含我们已经训练好的网络设计(计算图)和网络参数.因此,T…
简介 每过一段时间,就会有一个深度学习库被开发,这些深度学习库往往可以改变深度学习领域的景观.Pytorch就是这样一个库. 在过去的一段时间里,我研究了Pytorch,我惊叹于它的操作简易.Pytorch是我迄今为止所使用的深度学习库中最灵活的,最轻松的. 在本文中,我们将以实践的方式来探索Pytorch,包括基础知识与案例研究.我们会使用numpy和Pytorch分别从头开始构建神经网络,看看他们的相似之处. 提示:本文假设你已经对深度学习有一定的了解.如果你想深入学习深度学习,请先阅读本文…
ML.NET在不久前发行了1.0版本,在考虑这一新轮子的实际用途时,最先想到的是其能否调用已有的模型,特别是最被广泛使用的Tensorflow模型.于是在查找了不少资料后,有了本篇示例.希望可以有抛砖引玉之功. 环境 Tensorflow 1.13.1 Microsoft.ML 1.0.0 Microsoft.ML.TensorFlow 0.12.0 netcoreapp2.2 训练模型 这里为了方便,利用Keras的API减少所需的代码. import tensorflow as tf mni…
通过local server理解分布式TensorFlow集群的应用与实现. ​​简介 TensorFlow从0.8版本开始,支持分布式集群,并且自带了local server方便测试. Local server和分布式服务的接口一样,我们将从local server入手,详细解读分布式机器学习集群的用法. Local server的最简单用法 TensorFlow官方文档提供了local server的最简单用法,安装TensorFlow后直接在交互式Python终端中执行即可. 注意这里se…
概述 Apple的Core ML 3是一个为开发人员和程序员设计的工具,帮助程序员进入人工智能生态 你可以使用Core ML 3为iPhone构建机器学习和深度学习模型 在本文中,我们将为iPhone构建一个全新的应用程序! 介绍 想象一下,在不需要深入了解机器学习的情况下,使用最先进的机器学习模型来构建应用程序.这就是Apple的Core ML 3! 你是Apple的狂热粉丝吗?你用iPhone吗?有没有想过Apple是如何利用机器学习和深度学习来驱动其应用和软件的? 如果你对以上任何一个问题…
​  前言  由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难.特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究. 论文提出了一种新颖的 Ghost 模块,可以从廉价操作中生成更多的特征图.提出的 Ghost 模块可以作为即插即用的组件来升级现有的卷积神经网络.堆叠Ghost Module建立了轻量级的 GhostNet. GhostNet 可以实现比 MobileNetV3 更高的识别性能(例如 75.7% 的 top-1 准确率),并…
Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 更多详情参考:Paddle Graph Learning 图学习之图游走类模型[系列四] https://aistudio.baidu.com/aistudio/projectdetail/5002782?contributionType=1 相关项目参考: 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一] https://aistudio.baidu.com/aistudio/projec…
Dubbo是Alibaba开源的分布式服务框架,我们可以非常容易地通过Dubbo来构建分布式服务,并根据自己实际业务应用场景来选择合适的集群容错模式,这个对于很多应用都是迫切希望的,只需要通过简单的配置就能够实现分布式服务调用,也就是说服务提供方(Provider)发布的服务可以天然就是集群服务,比如,在实时性要求很高的应用场景下,可能希望来自消费方(Consumer)的调用响应时间最短,只需要选择Dubbo的Forking Cluster模式配置,就可以对一个调用请求并行发送到多台对等的提供方…
被我拖延了将近一个月的javascript事件模型系列终于迎来了第四篇,也是我计划中的最后一篇,说来太惭愧了,本来计划一到两个星期写完的,谁知中间遇到了很多事情,公司的个人的,搞的自己心烦意乱浮躁了一段时间,好在最近这些事情都一件件趋于平息,我也有了精力继续写文章. 这个自定义事件其实是挺让我纠结的,首先自己平时从未使用过,只是有一次遇到一个问题有人指点说可以用自定义事件,才对这个东西有了印象.在网上搜“javascript自定义事件”,发现也有不少文章在写,不过说实话让我佩服的却一篇也没找到,…
Dubbo是Alibaba开源的分布式服务框架,我们可以非常容易地通过Dubbo来构建分布式服务,并根据自己实际业务应用场景来选择合适的集群容错模式,这个对于很多应用都是迫切希望的,只需要通过简单的配置就能够实现分布式服务调用,也就是说服务提供方(Provider)发布的服务可以天然就是集群服务,比如,在实时性要求很高的应用场景下,可能希望来自消费方(Consumer)的调用响应时间最短,只需要选择Dubbo的Forking Cluster模式配置,就可以对一个调用请求并行发送到多台对等的提供方…