RDD、DataFrame和DataSet的区别】的更多相关文章

版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   转载请标明出处:小帆的帆的专栏 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. GC的性能开销 频繁的创建和销毁对象, 势必会增加GC   import org.apache.spark.sql.SQLContext import org.…
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了DataFrame和RDD的区别.左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构.而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数…
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利 2.三者都有惰性机制,在进行创建.转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,计算情况下,如果代码里面有创建.转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如 va…
总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.DataFrame是在1.3引入的,它包含数据与schema2部分信息,其中数据就是真正的数据,而不是一个java对象.它不容易理解,同时对java支持不好,还有一个缺点是非强类型,这会导致部分错误在运行时才会发现.优点是数据不需要加载到一个java对象,减少GC,大大优化了数据在集群间传播与本地序列化…
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但因Spark发展迅速(本文的写作时值Spark 1.6.2发布之际,并且Spark 2.0的预览版本也已发布许久),因此请随时关注Spark SQL官方文档以了解最新信息. 文中使用Scala对Spark SQL进行讲解,并且代码大多都能在spark-shell中运行,关于这点请知晓. 概述 相比于…
一.SparkSQL发展: Shark是一个为spark设计的大规模数据仓库系统,它与Hive兼容      Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来(by swapping out the physical execution engine part of Hive).这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码基线使得Shark很难优化和维护.随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分…
spark中RDD.DataFrame.DataSet都是spark的数据集合抽象,RDD针对的是一个个对象,但是DF与DS中针对的是一个个Row RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信,还是IO操作都需要对对象的结构和数据进行序列化和反序列化 GC的性能开销,频繁的创建和销毁对象,势必会增加GC开销 DataFrameDataFrame引入了schema和off-hea…
转载自:http://blog.csdn.net/wo334499/article/details/51689549 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. GC的性能开销 频繁的创建和销毁对象, 势必会增加GC   import org.apache.spark.sql.SQLContext import o…
简述 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同:DataFrame多了数据的结构信息,即schema.RDD是分布式的 Java对象的集合.DataFrame是分布式的Row对象的集合. 作者:jacksu来源:简书|2016-03-21 10:40   RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了…
这三个数据集看似经常用,但是真正归纳总结的时候,很容易说不出来 三个之间的关系与区别参考我的另一篇blog  http://www.cnblogs.com/xjh713/p/7309507.html 则三个用代码转换如下: 1.RDD -> Dataset val ds = rdd.toDS() 2. RDD -> DataFrame     val df = spark.read.json(rdd) 3. Dataset -> RDD    val rdd = ds.rdd 4. Da…