没有换根操作 考虑如果没有换根操作,我们该怎么做. 我们可以求出原树的\(dfs\)序列,然后开线段树维护. 对于修改操作,我们可以倍增求\(LCA\),然后在线段树上修改子树内的值. 对于询问操作,我们直接查询子树内的值. 但有了换根操作,\(LCA\)就可能不再是原来的\(LCA\),子树也就可能不再是原来的子树了. 换根操作后的\(LCA\) 通过一波画图+找规律,我们可以发现,在根为\(rt\)时,换根操作后的\(LCA(x,y)\)大致有如下几种情况:(以下讨论中\(x,y\)互换同理…
题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. 则我们可以用线段树优化建图. 具体步骤就是,建两棵线段树,每次新建一个虚节点,然后把需要向外连边的区间在一棵线段树上向这个节点连边,并从这个节点在另一棵线段树上向应被连边的区间连边. 求解答案 建完图之后,考虑如何求答案. 首先,我们\(Tarjan\)缩点,显然一个强连通分量内的所有节点可以相互…
可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作,先询问当前是否连通,若联通再询问\(t\)次操作前是否连通. 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typename Ty,typename... Ar>…
几个性质 我们通过推式子可以发现: \[B⇒AC⇒AAB⇒AAAC⇒C\] \[C⇒AB⇒AAC⇒AAAB⇒B\] 也就是说: 性质一: \(B,C\)可以相互转换. 则我们再次推式子可以发现: \[B⇒AC⇒AB\] 也就是说: 性质二: 在\(B\)或\(C\)之前可以任意加或减少若干个\(A\). 同样,我们可以发现: \[A⇒BC⇒BB\] 也就是说: 性质三: 在\(B\)或\(C\)之前可以任意加偶数个\(B\)或\(C\). 有了这些性质,你以为就做完了吗? 闪指导\(hl666\…
这次模拟赛真的,,卡常赛. The solution of T1: std是打表,,考场上sb想自己改进匈牙利然后wei了(好像匈牙利是错的. 大力剪枝搜索.代码不放了. 这是什么神仙D1T1,爆蛋T1,好像A了它或拿分的就几个人,, The solution of T2: 题解是这么写的:和八皇后很像,八皇后是x+y和x-y来判重,这里就k1x+k2y来判重. 从各个点引出直线,带入原点检验方程即可. 注: x/y = Δx/Δy x*Δy = Δx*y 下面代码用了这个原理,省去了gcd(或…
树形\(DP\) 考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率. 然后我们就能发现这个东西直接转移是几乎不可能的. 所以我们在转移时要开个辅助数组\(s_{op,x,y,k}\),其中\(op\)用于滚存,表示最长链为\(x\),次长链为\(y\),子节点子树内直径长度小于等于\(k\)的概率. 然后我们只要枚举子节点,再枚举子节点子树内的链长,就可以采用刷表法简便地\(DP\)转移了. 这样看似\…
树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再考虑非,即先转移,再交换\(f_{x,0,0}\)和\(f_{x,1,1}\),\(f_{x,1,0}\)和\(f_{x,0,1}\). 这样一来,转移方程如下: \[f_{x,i1\&i2,j1\&j2}=\sum f_{x,i1,j1}*f_{son,i2,j2}\] 然后,在转移结束,交…
期望得分:100+40+100=240 实际得分:50+40+20=110 T1 start取了min没有用,w(゚Д゚)w    O(≧口≦)O T3 代码3个bug :数组开小了,一个细节没注意,手抖打错变量... 细节处理很重要啊!!!! 贪心,按结束时间排序 #include<cstdio> #include<iostream> #include<algorithm> using namespace std; #define N 100001 struct no…
代码: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define rii register int i #define rij register int j #define int long long using namespace std; int n1,m1,p,nl[100005],t; int pf[10]={0,1,10,15,25,40,55…
subset 3.1 题目描述 一开始你有一个空集,集合可以出现重复元素,然后有 Q 个操作 1. add s 在集合中加入数字 s. 2. del s 在集合中删除数字 s.保证 s 存在 3. cnt s 查询满足 a&s = a 条件的 a 的个数3.2 输入 第一行一个整数 Q 接下来 Q 行,每一行都是 3 个操作中的一个 3.3 输出 对于每个 cnt 操作输出答案3.4 Sample Input 7 add 11 cnt 15 add 4 add 0 cnt 6 del 4 cnt…