简单多层神经网络实现异或XOR】的更多相关文章

最近在看<Neural Network Design_Hagan> 然后想自己实现一个XOR 的网络. 由于单层神经网络不能将异或的判定分为两类. 根据 a^b=(a&~b)|(~a&b) 而 我试了一下 或 和 与 都可以用感知神经元解决,也就是一个. 那么与和或的实现: hardlim (n )=a ,n>=0时 a=1;n<0时a=0: 显然需要三个神经元 神经元表达式如下: int fun(int w[],int x[],int b) { return w[…
一.Introduction Perceptron can represent AND,OR,NOT 用初中的线性规划问题理解 异或的里程碑意义 想学的通透,先学历史! 据说在人工神经网络(artificial neural network, ANN)发展初期,由于无法实现对多层神经网络(包括异或逻辑)的训练而造成了一场ANN危机,到最后BP算法的出现,才让训练带有隐藏层的多层神经网络成为可能.因此异或的实现在ANN的发展史是也是具有里程碑意义的.异或之所以重要,是因为它相对于其他逻辑关系,例如…
用Tensorflow实现多层神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 ReLU激活函数/L1范数版本 Sigmoid激活函数/交叉熵函数版本 数据集及网络结构 数据集 使用预测出生体重的数据集csv格式,其中数据的第2列至第8列为训练属性,第9列为体重数据即标签,第一列为标记是否为低出生体重的标记,本博文中不对其进行讨论. Low Birthrate data: Columns(列) Vari…
注:在吴恩达老师讲的[机器学习]课程中,最开始介绍神经网络的应用时就介绍了含有一个隐藏层的神经网络可以解决异或问题,而这是单层神经网络(也叫感知机)做不到了,当时就觉得非常神奇,之后就一直打算自己实现一下,一直到一周前才开始动手实现.自己参考[机器学习]课程中数字识别的作业题写了代码,对于作业题中给的数字图片可以达到95%左右的识别准确度.但是改成训练异或的网络时,怎么也无法得到正确的结果.后来查了一些资料才发现是因为自己有一个参数设置的有问题,而且学习率过小,迭代的次数也不够.总之,异或逻辑的…
感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \mathcal{X}\)表示实例的特征向量,对应于输入空间的点:输出\(y\in \mathcal{Y}\)表示实例的类别.有输入空间到输出空间的如下函数: \[\begin{aligned} f(x)= g(\textbf{w}\cdot \textbf{x}+b) \end{aligned} \…
反向传播算法(Back Propagation)分二步进行,即正向传播和反向传播.这两个过程简述如下: 1.正向传播 输入的样本从输入层经过隐单元一层一层进行处理,传向输出层:在逐层处理的过程中.在输出层把当前输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程. 2.反向传播 反向传播时,把误差信号按原来正向传播的通路反向传回,逐层修改连接权值,以望代价函数趋向最小. 下面以单隐层的神经网络为例,进行权值调整的公式推导,其结构示意图如下: 输入层输入向量(n维):X=(x1,…
首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络. 1.神经单元的选择 那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题: 1)感知器训练法则中的输出 由于sign函数时非连续函数,这使得它不可微,因而不能使用上面的梯度下降算法来最…
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便.关于MNIST的基本信息可以参考我的上一篇随笔. mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 2.模型基本结构 本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一…
代码地址如下:http://www.demodashi.com/demo/11138.html 一.准备工作 需要准备什么环境 需要安装有Visual Studio并且配置了OpenCV.能够使用OpenCV的core模块. 使用者需要有基本的C++编程基础. 本例子实现什么功能 本例实现了简单的深度神经网络,基于OpenCV的矩阵类Mat.程序实现了BP算法,支持创建和训练多层神经网络,支持loss可视化.支持模型的保存和加载. 二.示例代码 新建和初始化一个神经网络的过程非常简单,像下面这样…
python实现一个简单三层神经网络的搭建(有代码) 废话不多说了,直接步入正题,一个完整的神经网络一般由三层构成:输入层,隐藏层(可以有多层)和输出层.本文所构建的神经网络隐藏层只有一层.一个神经网络主要由三部分构成(代码结构上):初始化,训练,和预测.首先我们先来初始化这个神经网络吧! 1.初始化 我们所要初始化的内容包括:神经网络每层上的神经元个数(这个是根据实际问题输入输出而得到的,我们将它设置为一个可自定义量). 不同层间数据互相传送的权重值. 激活函数(模拟自然界的神经元,刺激信号需…