Halcon编程-基于纹理的mara检测】的更多相关文章

表面瑕疵检测是机器视觉领域非常重要的一个应用.机器视觉是集光学.机电和计算机三个领域的一门不算新的技术.但目前表面瑕疵检测在学界主要是计算机专业或者控制专业瞄准图像处理方向在做,而视觉光学系统这一块主要是光学工程专业在做.很少有研究者把这三块都结合的很好,而国内做这机器视觉(注意是机器视觉 不是计算机视觉)基本上都是小公司. 软件这一块就不说了,国内的整体软件环境不好.据我所知,日本.德国和美国在机器视觉方面有很多相对成熟的软件.中国农业大学的陈兵旗教授在留日期间弄过很多机器视觉方面的农业机器人…
halcon软件最高效的一个方面在于模板匹配,号称可以快速进行柔性模板匹配,能够非常方便的用于缺陷检测.目标定位.下面以一个简单的例子说明基于形状特征的模板匹配.      为了在右图中,定位图中的三个带旋转箭头的圆圈.注意存在,位置.旋转和尺度变化. 上halcon程序 * This example program shows how to find scaled and rotated shape models. dev_update_pc ('off') dev_update_window…
基于纹理边缘抑制的轮廓和边界检测(Contour and Boundary Detection) kezunhai@gmail.com http://blog.csdn.net/kezunhai 一幅复杂的自然场景图像中包含丰富的信息,视觉不可能对空间中的每一点赋予相同的关注程度.对人类视觉系统的实验表明:图像中的轮廓特征特别重要,它们在保留关于物体的边界有用的结构信息的同时,极大地降低了数据量,从而简化了信息的表达形式,使视觉能对各种瞬息万变的输入可以及时有效地处理.在很多情况下,根据画出了的…
10分钟内基于gpu的目标检测 Object Detection on GPUs in 10 Minutes 目标检测仍然是自动驾驶和智能视频分析等应用的主要驱动力.目标检测应用程序需要使用大量数据集进行大量训练,以实现高精度.NVIDIA gpu在训练大型网络以生成用于对象检测推断的数据集所需的并行计算性能方面表现优异.本文介绍了使用NVIDIA gpu快速高效地运行高性能目标检测管道所需的技术. 我们的python应用程序从实时视频流中获取帧,并在gpu上执行对象检测.我们使用带有Incep…
基于纹理的图片检索及demo(未启动)…
一.关于检测算法 分类器训练: 通过正样本与负样本训练可得到分类器,opencv有编译好的训练Demo,按要求训练即可生成,这里我们直接使用其已经训练好的分类器检测: 检测过程: 检测过程很简单,可以通过两种方式进行检测: 1.缩放图像:根据要检测的人脸尺寸范围对原图进行缩放,然后利用窗口(训练时正样本的尺寸),逐个遍历该尺寸下图像的所有潜在人脸位置,与分类器匹配,若通过每一级强分类器,则为人脸,若不能通过任何一级强分类器,则被判定不是人脸: 2.缩放特征:与缩放图像类似,不同的是缩放图像方式遍…
在没有安装Halcon开发程序(HDevelop (SSE2))的电脑上面编程,使C#脱离Halcon编程开发环境使用方法,除了按照Halcon与编程环境必须要做的设置步骤外,还需要做如下两个工作: 1. 必须将halcon.dll  halcondotnet.dll   license 三个文件库复制到工程文件运行目录下,即(\bin\Debug目录下):(注:另外halcon.dll库文件也可以复制到C:\WINDOWS目录下) 2. 然后创建C:\Program Files\MVTec\h…
这里共享一个基于NGUI的引用检测工具.工具包括几个部分:Atlas/Sprite的引用查找:字库引用查找:UITexture引用查找:Component查找: 代码就不多介绍了,文章底部提供源码下载地址.需要的自行下载根据自己需要修改.这里简单讲下主要功能 一.Atlas/Sprite的引用查找 检索文件夹:在Project视图选中一个文件夹,输入图集名和精灵名,点击查找,会在Console打印出引用了对应图集和精灵的路径信息.双击路径信息,可以定位到Project对应Prefab的位置. 检…
检测结果如下 这个示例程序需要使用较大的内存,请保证内存足够.本程序运行速度比较慢,远不及OpenCV中的人脸检测. 注释中提到的几个文件下载地址如下 http://dlib.net/face_detection_ex.cpp.html http://dlib.net/dnn_introduction_ex.cpp.html http://dlib.net/dnn_introduction2_ex.cpp.html http://dlib.net/dnn_mmod_ex.cpp.html /*…
基于R-CNN的物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187029 作者:hjimce 一.相关理论 本篇博文主要讲解2014年CVPR上的经典paper:<Rich feature hierarchies for Accurate Object Detection and Segmentation>,这篇文章的算法思想又被称之为:R-CNN(Regions with Convolutional Neural Netwo…