spring boot基于redis的LUA脚本 实现分布式锁[都是基于redis单点下] 一.spring boot 1.5.X 基于redis 的 lua脚本实现分布式锁 1.pom.xml <!-- Redis --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifact…
工作中,经常会遇到分布式环境中资源访问冲突问题,比如商城的库存数量处理,或者某个事件的原子性操作,都需要确保某个时间段内只有一个线程在访问或处理资源. 因此现在网上也有很多的分布式锁的解决方案,有数据库.MemCache.ZoopKeeper等等的方式. 这次,我们要学习的是一个基于Redis分布式锁的插件,RedLock.Net. 首先必须要有一个Redis服务来支持此分布式锁,其次就当然是要获取此插件了. 可以从Nuget中获取,也可以直接去Github下载   https://github…
参考资料 网址 Spring Boot 2实现分布式锁--这才是实现分布式锁的正确姿势! http://www.spring4all.com/article/6892…
本篇内容主要讲解的是redis分布式锁,这个在各大厂面试几乎都是必备的,下面结合模拟抢单的场景来使用她:本篇不涉及到的redis环境搭建,快速搭建个人测试环境,这里建议使用docker:本篇内容节点如下: jedis的nx生成锁 如何删除锁 模拟抢单动作(10w个人开抢) jedis的nx生成锁 对于java中想操作redis,好的方式是使用jedis,首先pom中引入依赖: <dependency> <groupId>redis.clients</groupId> &…
这版秒杀只是解决瞬间访问过高服务器压力过大,请求速度变慢,大大消耗服务器性能的问题. 主要就是在高并发秒杀的场景下,很多人访问时并没有拿到锁,所以直接跳过了.这样就处理了多线程并发问题的同时也保证了服务器的性能的稳定. 接下来我们使用redis的分布式锁来进行枷锁处理: 我们可以在进入下单的方法后将核心的方法加锁,然后离开后进行解锁 主要三步: 加锁 核心方法 解锁 首页分布式加锁解锁工具类: @Component public class RedisLock { private static…
分布式锁是在分布式环境下(多个JVM进程)控制多个客户端对某一资源的同步访问的一种实现,与之相对应的是线程锁,线程锁控制的是同一个JVM进程内多个线程之间的同步.分布式锁的一般实现方法是在应用服务器之外通过一个共享的存储服务器存储锁资源,同一时刻只有一个客户端能占有锁资源来完成.通常有基于Zookeeper,Redis,或数据库三种实现形式.本文介绍基于Redis的实现方案. 要求 基于Redis实现分布式锁需要满足如下几点要求: 在分布式集群中,被分布式锁控制的方法或代码段同一时刻只能被一个客…
转载:http://blog.5ibc.net/p/28883.html 最近在项目中遇到了类似“秒杀”的业务场景,在本篇博客中,我将用一个非常简单的demo,阐述实现所谓“秒杀”的基本思路. 业务场景 所谓秒杀,从业务角度看,是短时间内多个用户“争抢”资源,这里的资源在大部分秒杀场景里是商品:将业务抽象,技术角度看,秒杀就是多个线程对资源进行操作,所以实现秒杀,就必须控制线程对资源的争抢,既要保证高效并发,也要保证操作的正确. 一些可能的实现 刚才提到过,实现秒杀的关键点是控制线程对资源的争抢…
转载:http://blog.csdn.net/u010359884/article/details/50310387 最近在项目中遇到了类似“秒杀”的业务场景,在本篇博客中,我将用一个非常简单的demo,阐述实现所谓“秒杀”的基本思路. 业务场景 所谓秒杀,从业务角度看,是短时间内多个用户“争抢”资源,这里的资源在大部分秒杀场景里是商品:将业务抽象,技术角度看,秒杀就是多个线程对资源进行操作,所以实现秒杀,就必须控制线程对资源的争抢,既要保证高效并发,也要保证操作的正确. 一些可能的实现 刚才…
在单进程的系统中,当存在多个线程可以同时改变某个变量(可变共享变量)时,就需要对变量或代码块做同步,使其在修改这种变量时能够线性执行消除并发修改变量. 而同步的本质是通过锁来实现的.为了实现多个线程在一个时刻同一个代码块只能有一个线程可执行,那么需要在某个地方做个标记,这个标记必须每个线程都能看到,当标记不存在时可以设置该标记,其余后续线程发现已经有标记了则等待拥有标记的线程结束同步代码块取消标记后再去尝试设置标记.这个标记可以理解为锁. 不同地方实现锁的方式也不一样,只要能满足所有线程都能看得…
目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项.”所以,很多系统在设计之初就要对这三者做出取舍.在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即…